

What is Artificial Intelligence?

 Artificial intelligence is the computational study of structures and processes that support intelligent behaviour.

- Term first coined in 1956:
 - Dartmouth Summer Research Project on Artificial Intelligence
- Areas of research include:
 - Computer vision
 - Natural language processing
 - Robotics
 - Knowledge-based systems
 - Machine learning

Aims of Artificial Intelligence

- Three interrelated aims:
 - Engineering aim
 - Psychological aim
 - General/Philosophical aim

Source:

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

Engineering Aim

- To engineer, or provide computational principles and engineering techniques for, "useful" artefacts that are arguably intelligent.
 - Mechanistic similarity to human or animal minds/brains is not necessary.

- The artefact may be useful in one of a variety of domains:
 - Industry
 - Mathematics
 - Art
 - Everyday life

Source:

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

Psychological Aim

 To create computational principles, theories or systems that provide a greater insight on cognition in human or animal minds/brains.

Source:

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

General/Philosophical Aim

- To create computational principles, theories or systems that provide a greater insight on cognition in general.
 - Human made artefacts
 - Naturally occurring organism
 - Cognizant entities yet to be discovered.

 Includes looking at philosophical issues like the nature of intelligence, thought, consciousness, etc.

Source:

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

What is Intelligence?

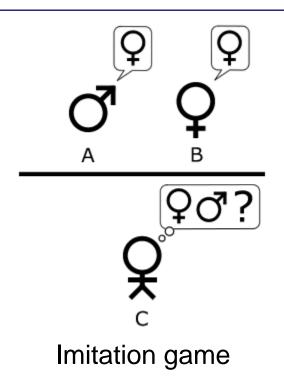
- When we say that humans are intelligent, we mean they exhibit certain high-level cognitive abilities, including:
 - Carrying out complex reasoning
 - E.g., solving physics problems, proving mathematical theorems
 - Drawing plausible inferences
 - E.g., diagnosing automobile faults, solving murder cases
 - Using natural language
 - E.g., reading stories, carrying out extended conversations
 - Solving novel, complex problems
 - E.g., completing puzzles, generating plans, designing artifacts
- Does not include:
 - Executing motor skills or autonomic activity (breathing, reflexes etc.)

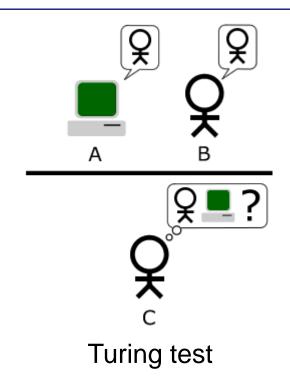
Philosophical View Of Intelligence

- Behaviourist/Functionalist approach:
 - External behaviour matters
 - If it behaves intelligently, then it is intelligent
 - Turing test
- Cognitive approach:
 - What happens internally matters
 - We must consider how it thinks, not just look at the behaviour
 - Chinese room

The Turing Test

- Proposed by Alan Turing in his 1950 paper "Computing Machinery and Intelligence".
 - Defines criteria for determining machine intelligence
 - "Are there imaginable digital computers which would do well in the imitation game?"


- Three players A, B, and C
- A is a man and B is a woman. C, the interrogator is of either gender
- Player C is unable to see either player A or player B
- C asks A and B questions, trying to determine which of the two is a man and which is the woman


Standard Turing test:

- Three players A, B, and C
- A is a computer and B is a person of either sex. C, the interrogator is also a person of either gender
- Player C is unable to see either player A or player B
- C asks A and B questions, trying to determine which of the two is human and which is the machine

The Turing Test

• If on completion of the Turing test, C cannot tell A and B apart, then machine A is intelligent.

Source: https://en.wikipedia.org/wiki/Turing_test

The Chinese Room

 Thought experiment proposed by John Searle in his 1980 paper "Minds, Brains, and Programs".

Refutes functionalist viewpoint:

"The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds"

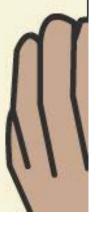
The Chinese Room

Premise:

- Person in a closed room who has no understanding of Chinese.
- Room contains a manual with instructions detailing the appropriate response, in Chinese characters, to every possible input, also in Chinese characters.
- Person can communicate via written responses with the outside world through a slot in the door.

Scenario:

- A Chinese person passes messages written in Chinese, to the person in the Chinese Room.
- Person in the room responds using the manual; they appear to be conversant in Chinese despite not understanding any of the communication.


Argument:

Without "understanding", a machine's activity cannot be described as "thinking". Since a machine
does not think, it does not have a "mind" in the same way you would say a person does.

Source: https://en.wikipedia.org/wiki/Chinese_room

Chinese Room Rulebook

 then produce this shape,
"為天"
followed by this shape,
"下式".

Strong AI versus Weak AI

Strong AI

 The view that a computer could become self-aware and exhibit intelligent behaviour.

Weak Al

- The view that computers could not become self-aware and reason.
 - Can be used to solve specific problems in a well-defined domain

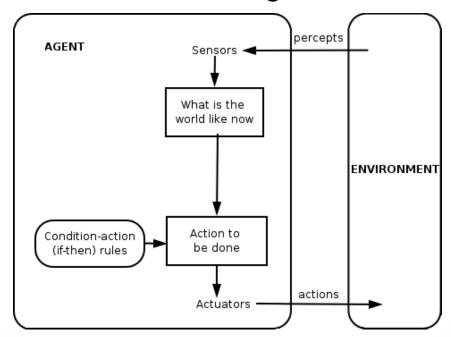
Examples of Strong Al

Examples Of Weak Al

IBM Deep Blue

- Chess playing computer
- Won a game against reigning world champion Garry Kasparov in 1996, losing the overall match.
- Won the match against Kasparov in 1997; first computer to do so in a match under standard chess tournament time controls.
- Deep Blue was programmed with history of Kasparov's previous games.
- Programming was modified between games to avoid traps.
- Kasparov was not permitted to study Deep Blue's previous games.

IBM Deep Blue



Examples Of Weak Al

Agents

- Autonomous entity that works in a defined environment.
- Agent achieves goals within environment using:
 - Percepts observations of the environment obtained through sensors
 - Actions made on the environment using actuators

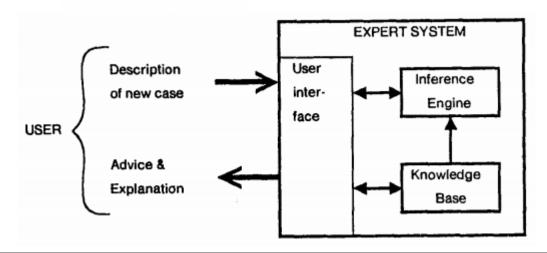
Source: https://en.wikipedia.org/wiki/Intelligent_agent

Curiosity Rover

- Part of the Mars Exploration Program to study:
 - Whether Mars could have ever supported life.
 - Role of water on Mars
 - Climate and geology of Mars
- Curiosity rover navigates surface of Mars autonomously.

Examples Of Weak Al

Expert System


- Computer system that emulates decision making ability of a human expert.
- Two components:
 - Knowledge base repository of information/facts about the world as well as rules that can be applied to the facts. Rules usually have an IF-THEN representation.
 - Inference engine applies rules to known facts to deduce new knowledge.

Sources:

MYCIN

MYCIN

- is an example of an early expert system.
- Initially designed to diagnose bacterial infections.
- List of possible bacterial culprits provided, ranked from high to low based on the probability of each diagnosis.
- Antibiotic treatment regimen, dose adjusted for patient's body weight, was also given.

Sources:

Representing Problems As Symbols

- Al programs reduce problems to symbols.
- Problems are solved through the manipulation of these symbols.
- The manipulation of these symbols can seem intelligent.
- The computer does not "know' what the symbols mean.

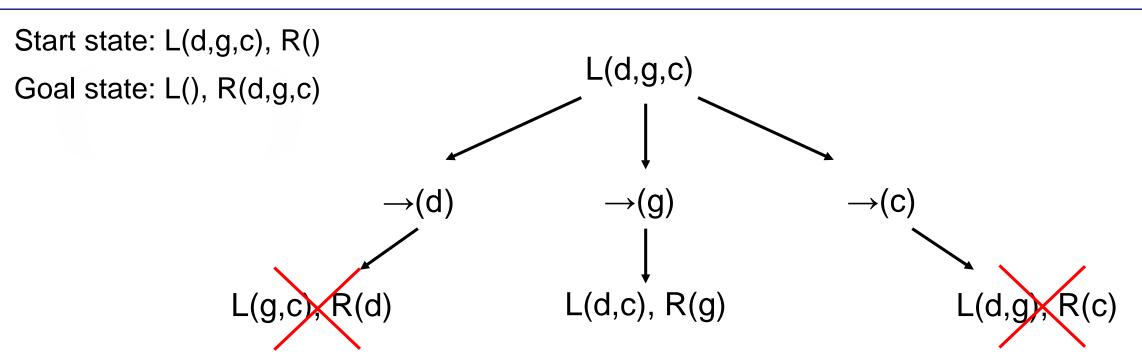
Example

Scenario:

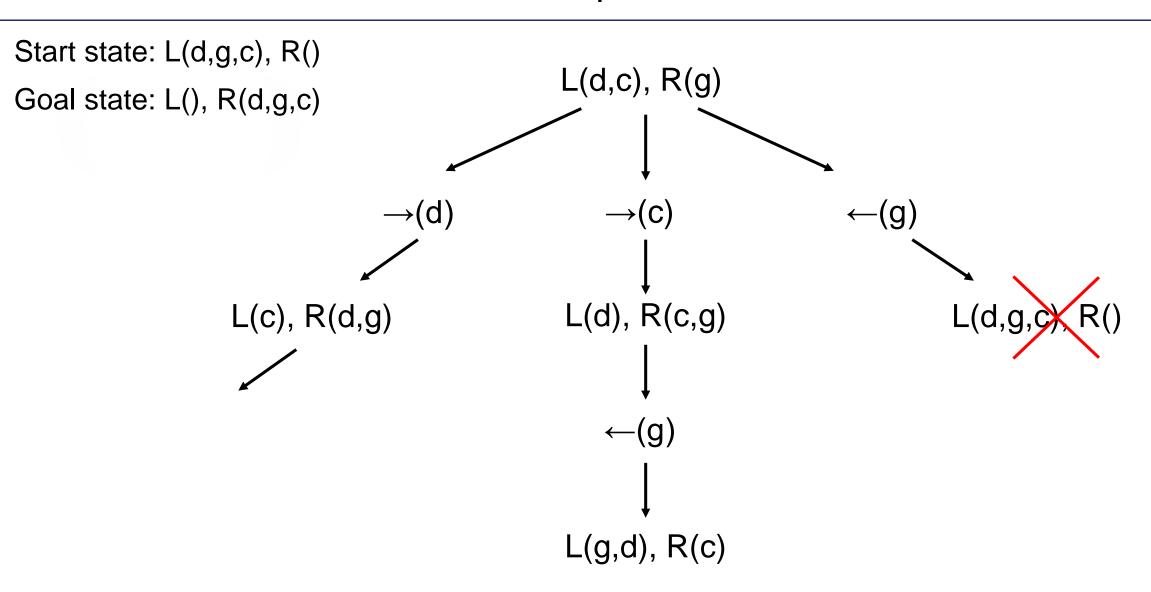
 A farmer needs to cross a river by boat taking with him his dog, goose, and a sack of corn.

Constraints:

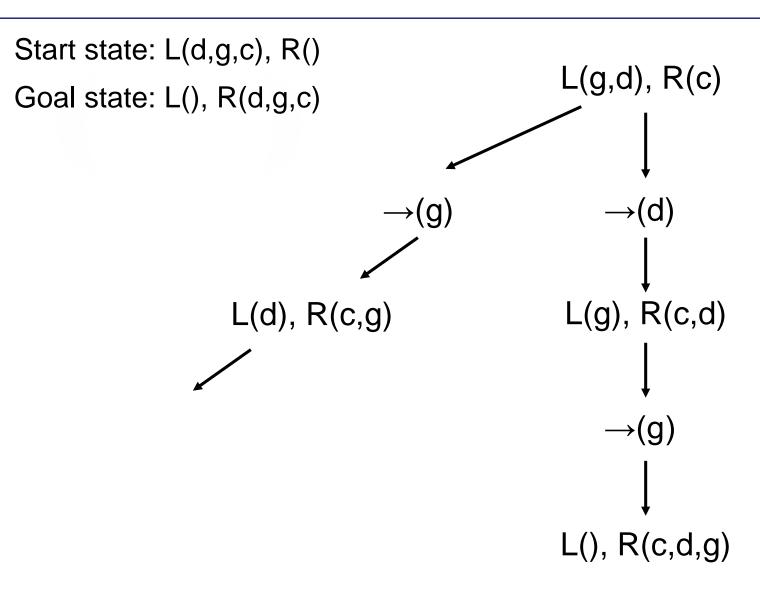
- The boat is small and can only hold one item along with the farmer.
- The dog can't be left alone with the goose. The dog will eat the goose.
- The goose can't be left alone with the corn. The goose will eat the corn.


Problem:

What is the order in which the farmer transfers his property across the river?


Symbolic Representation

- Dog = d
- Goose = g
- Corn = c
- At the start of the problem, all three are on the left bank of the river. The right bank is empty.
 - Start state: L(d,g,c), R()
- The goal is to get all three across to the right bank:
 - Goal state: L(), R(d,g,c)
- Operators are used to indicate actions the farmer can take:
 - Row dog to right bank = \rightarrow (d)
 - Row corn to left bank = ←(c)


State Space Search

State Space Search

State Space Search

Problem solution

- Start state: L(d,g,c), R()
- Goal state: L(), R(d,g,c)
- Solution:

$$\rightarrow$$
(g) \rightarrow (c) \leftarrow (g) \rightarrow (d) \rightarrow (g)

Summary

• Artificial intelligence is the computational study of structures and processes that support intelligent behaviour.

- Two philosophical views of intelligence:
 - Behaviourist/functionalist and cognitive.
- Strong AI versus Weak AI.
 - The study of Weak AI has produced many useful applications.
- Emphasizes symbolic representations of problems