Spreadsheets 1 -References and Formulas

Lecture 20 - COMPSCI111/111G SS 2016

Today's lecture

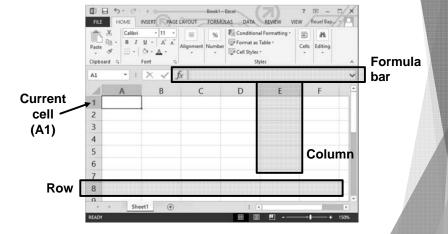
- ORDER BY question from last class
- ► History of spreadsheet applications
- ► How a spreadsheet works
- Absolute vs relative references
- ► Functions:
 - ► Basic functions (SUM, MIN, MAX, AVG)
 - ► IF function
 - Logical tests and operators

Multiple ORDER BY fields

- ▶ ORDER BY [field] ASC/DESC, [field] ASC/DESC
- SELECT [First Names], Surname, Age FROM Students
 ORDER BY Surname ASC, [First Names] ASC;

VisiCalc

- The first spreadsheet program was called VisiCalc, short for Visible Calculator
- Developed by Dan Bricklin and Bob Frankston, released in 1979
- ► VisiCalc was the first 'killer app' on the PC


VisiCalc

- VisiCalc had a number of features that are commonly found in spreadsheet programs today:
 - Organising calculations in rows and columns
 - ► Automatic updating of calculations
 - Copying formulas

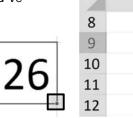
Microsoft Excel

 Commonly used spreadsheet program, part of Microsoft Office

Appearance of cells

- ► You can change the appearance of cells:
 - ► Alter size
 - Add borders
 - Add shading
 - ► Alter font
 - Formatting (eg. currency, decimal points, date values)

lumber	Alignment	Font	Border	Fill	Protection		
Category: General Number Currency Accounting Date Percentage Fraction Scientific Text Special Custom		Sample		have no	specific numb	er format.	
	*						


Entering data

- ► Enter data into:
 - The cell
 - ► The Formula Bar (after selecting a cell)
- You can enter:
 - ► Text
 - Numbers
 - Images
 - ► Formulas; must begin with '='
- When you enter a value, any formulas which use the current cell are recalculated

10	Hor	ne Inser	t Page L	ayout Fo	rmulas
ſ	X	Calibri	- 11	* A *	= = ;
	aste J	BI	2 • 🖽 • Font	ð• <u>A</u> ·	Alle
	A3		- (-	fx =3+4	+5
Z	A	В	C	D	E
1	Text				
2	3	2			
3	1	2			
4					
5					
6					

Filling cells

- Allows you to automatically copy a value or formula from one cell in any direction
- ► Steps:
 - ► Select a cell
 - Click and drag the small box in the bottom right hand corner in any direction
 - Release mouse when you've selected the cells to fill

Α

В

26

Cell references

- ► In some formulas, you'll need to refer to other cells. There are two kinds of cell references.
- ► Relative references (eg. C3)
 - ► The cell reference moves along with the formula
- ► Absolute reference (eg. \$C\$3)
 - The '\$' locks the column and/or row in the reference, meaning it stays the same if the formula moves

Relative references

When the formula moves down by one row, the cell references move down by one row

1	А	В	С	D	E				
1	Hours worked								
2		Monday	Tuesday	Total hours					
3	Paul	5	8	13	=B3+C3				
4	Steve	9	2	11	=B4+C4				
5	Michael	3	4	7	=B5+C5				
6									
7	Pay rate:	\$15							

Absolute references

Since the reference to 'Pay Rate' is not fixed, we get incorrect results

1	A	В	С	D	E
1			Hours work	ked	
2		Monday	Tuesday	Total pay	
3	Paul	5	8	\$195	=B7*(B3+C3)
4	Steve	9	2	\$0	=B8*(B4+C4)
5	Michael	3	4	\$0	=B9*(B5+C5)
6					
7	Pay rate:	\$15			
8	1.112				
9					

Absolute references

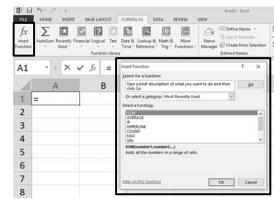
- ▶ Using '\$' to lock the row in place fixes the problem
 - ► We can also lock the column with '\$' but it doesn't make a difference in this case

1	A	В	С	D	E
1			Hours wor	ked	
2		Monday	Tuesday	Total pay	
3	Paul	5	8	\$195	=B\$7*(B3+C3)
4	Steve	9	2	\$165	=B\$7*(B4+C4)
5	Michael	3	4	\$105	=B\$7*(B5+C5)
6					
7	Pay rate:	\$15			

Example

What formula would you use in cell E8 to calculate the money made from ticket sales? Your formula must be able to be filled up and down

4	A	В	С	D	E
1		Ticket Sa	les		
2					
3	Price	\$10.00			
4					
5	Event	Tickets Available	Tickets Sold	Remaining	Sales
6	Cycling	4000	2000	2000	\$20,000.00
7	Weightlifting	2000	750	1250	\$7,500.00
8	Triathlon	1000	100	900	\$1,000.00
9	Football	3000	3000	0	\$30,000.00
10	Badminton	5000	4500	500	\$45,000.00


Example

▶ =C8*\$B\$3

1	A	В	С	D	E
1		Ticket Sa	les		
2					
3	Price	\$10.00			
4					
5	Event	Tickets Available	Tickets Sold	Remaining	Sales
6	Cycling	4000	2000	2000	\$20,000.00
7	Weightlifting	2000	750	1250	\$7,500.00
8	Triathlon	1000	100	900	\$1,000.00
9	Football	3000	3000	0	\$30,000.00
10	Badminton	5000	4500	500	\$45,000.00

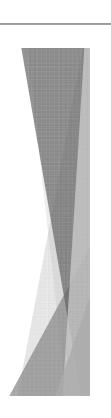
Functions

- ► Allow you process data in your spreadsheet
- ► Formulas → Insert Function lets you search for functions and learn about their syntax

Basic Functions

- ► SUM, MAX, MIN, AVERAGE
- ▶ Similar syntax: [function name] (values)
 - ► SUM(range), eg. SUM(B3:B10)
 - ▶ SUM(cell, cell ...), eg. SUM(B3, B4, B5)
 - ► SUM(number, number ...), eg. SUM(5, 7, 8)
- ► Functions can be included in formulas =B6 + SUM(A1:A100)

IF function


- Inserts a value in a cell based on the outcome of a logical test (ie. true/false)
- Syntax: =IF(logical_test, value_if_true, value if false)

Logical tests

- ► A condition which evaluates to TRUE or FALSE
- ► Comparison operators:
 - ▶ =
 - eg. =10 = 15 is false
 - > and <</p>
 - eg. = 5 > 10 is false
 - ► >= and <=
 - eg. =5 >= 5 is true

Logical tests

- Boolean functions:
 - ► AND(a, b); both a and b must be true eg. =AND(3 = 4, 2 = 2) is false
 - ► OR(a, b); either a or b can be true eg. =OR(3 = 4, 2 = 2) is true
 - ► NOT(a); inverts the outcome of a eg. =NOT(2 = 3) is true

IF function

- Syntax: =IF(logical_test, value_if_true, value_if_false)
- ► IF statement places 'Bigger' in column B if number in column A is bigger than number in B1, and 'Smaller' if number in column A is smaller than number in B1

1	A	В	C
1	Test number:	20	
2			
3	13	Smaller	=IF(A3>\$B\$1, "Bigger", "Smaller")
4	14	Smaller	
5	45	Bigger	
6	1	Smaller	

Exercise

- ► Formula in E2: =B2*C2*D2
- ▶ Formula in F2: =IF(E2<\$C\$9, "Yes", "No")
- ► Formula in B7: =AVERAGE(B2:B6)

1	A	В	С	D	E	F
1		Length	Width	Height	Volume	Acceptable?
2	Package 1	85	44	0.5	1870	Yes
3	Package 2	15	87	6	7830	No
4	Package 3	48	33	1	1584	Yes
5	Package 4	89	256	0.75	17088	No
6	Package 5	26	14	1	364	Yes
7	Average	52.6	86.8	1.85		
8						
9	Maximu	m volume:	5000	cm ³		

Exercise

- ▶ Write formulas that can be filled down:
 - E2: formula to calculate the package's volume
 volume = length * width * height
 - ► F2: if the package is less than 5000cm³, then write "Yes" in cell, otherwise write "No"
- ► Formula for B7 that can be filled right, which finds the average package length, width, height

1	A	В	С	D	E	F
1		Length	Width	Height	Volume	Acceptable?
2	Package 1	85	44	0.5	1870	Yes
3	Package 2	15	87	6	7830	No
4	Package 3	48	33	1	1584	Yes
5	Package 4	89	256	0.75	17088	No
6	Package 5	26	14	1	364	Yes
7	Average	52.6	86.8	1.85		
8						
9	Maximu	m volume:	5000	cm ³		

Summary

- VisiCalc was the first spreadsheet program and 'killer app'
- Microsoft Excel is centred on a spreadsheet made up of columns and rows
- ► Cell references can be relative and absolute
- Formulas allow us to compute values in cells.
 Functions allow us to process data and see an output
 - ► Functions: SUM, MAX, MIN, AVERAGE, IF