

Today's class

- ▶ Introduction to COMPSCI111/111G
 - ► People
 - ► Assessment
 - ► Labs
 - ► Test and exam
- ▶ Introduction to hardware
- ▶ Bits, bytes and digital information

Lecturers

- ▶ Damir Azhar
 - ► damir.azhar@auckland.ac.nz
 - ▶ 303S, Level 3, room 390
- ► Reuel Baptista
 - ► reuel.baptista@auckland.ac.nz
 - ▶ 303S, Level 5, room 567
- ► Paul Ralph
 - ▶ p.ralph@auckland.ac.nz
 - ▶ 303S, Level 4, room 492
- ► We all have an open door policy. Visit anytime or email for an appointment

Course coordinator and lab supervisor

- ► Ann Cameron
 - ▶ 303S, Level 4, room 479
 - ► a.cameron@auckland.ac.nz
 - ▶ Open door policy. Visit anytime or email for appointment
- ► Contact Ann if you have questions about the course or labs

Computer Science Support Network

Radu Nicolescu 303-587 Ext: 86831

Ann Cameron Room: 303S.479 Ext: 84947 E-mail: ann@cs.auckland.ac.nz

Need to talk to someone? We are here to listen and help! Come and talk to us!

Adriana Ferraro Room: 3035.490 Ext: 87113 Email: adriana@cs.auckland.ac.nz

Room: 303S.465 Ext: 87087 Email: paul@cs.auckland.ac.nz

Andrew Luxton-Reilly. Room: 303S.479 Ext: 85654 Email: andrew@cs.auckland.ac.nz

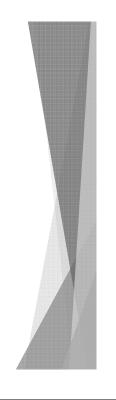
Marks for COMPSCI111/111G

► Theory: exam and test

► Practical: labs

► Need to pass half of the theory and half of the practical in order to pass the course

Exam (60%)


Test (20%) Labs (20%)

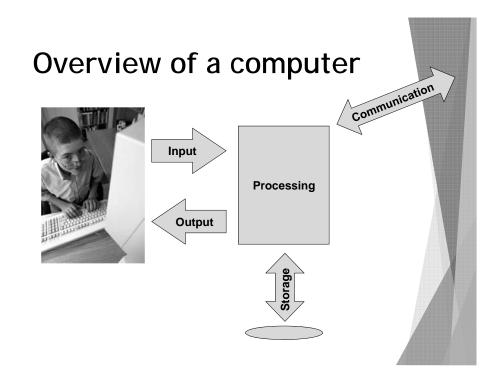
Test

- ► Wednesday 27 January, 11.30am-12.30pm F&PA Auditorium
- ▶ The test will cover lectures 1-14 and labs 1-5

- ► An opportunity to practise what you learn in lectures
 - ▶ 2 compulsory 3-hour labs each week
 - ▶ 9 labs worth 20% of final mark
 - ▶ 10% of each lab's mark is given for arriving on time
 - ▶ Hand in lab assignment before start of next lab
- ▶ Before labs start on Thursday please:
 - ▶ Buy a lab manual from UBS
 - ▶ Find the First Floor Teaching Lab (FTL 303S-175)
 - ▶ Make sure you have a USB drive

Exam

► Date and location will be announced by the Exams Office


- ► Canvas and email announcements
- ► The course website: www.cs.auckland.ac.nz/courses/compsci111ssc
- ► You need to purchase a 2016 Summer School lab manual from UBS
- ► Coursebook; available on the home page of the course website
- ► The Computer Science student forum: http://forums.cs.auckland.ac.nz
- ▶ Any of the COMPSCI111/111G teaching staff ©
 - ▶ Please use your University email account when emailing us

Computer Hardware

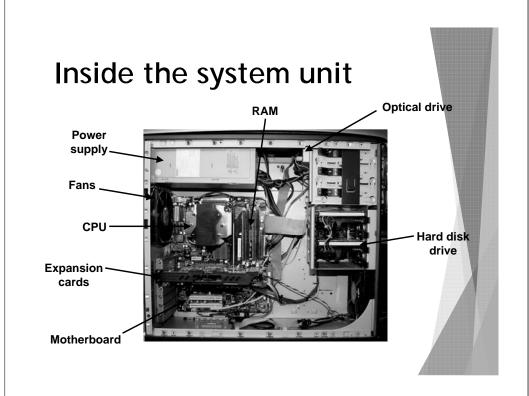
Lecture 1 - COMPSCI111/111G SS 2016

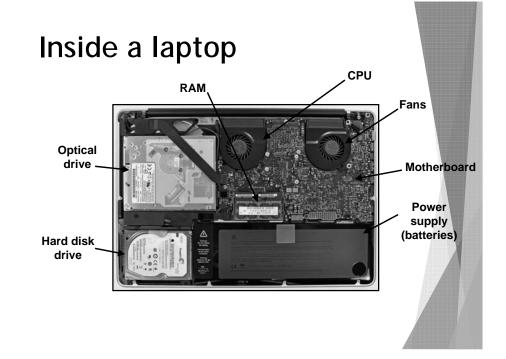
Today's lecture

- ▶ Identifying the key components in a computer
- ▶ Understanding how these components work
- ► Using this knowledge to understand computer specs

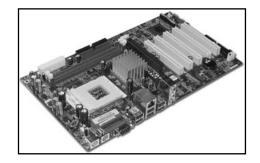
Computer hardware

- ► "Those parts of the system that you can hit with a hammer (not advised) are called hardware"
- ► Key design principle of modularity




Form factors

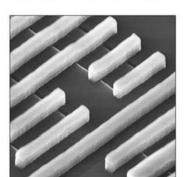
System units come in lots of different form factors


Power supply unit

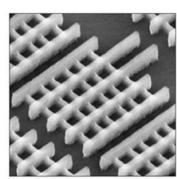
► Converts AC voltage to DC voltage for use within the computer

Motherboard

► The main circuit board to which all components are connected, allowing them to communicate with each other


Central processing unit (CPU)

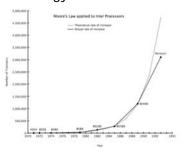
- ► The 'brain' of a computer. Processes data in a computer using its instruction set
- ▶ Performance measured in instructions per second
- ► Clock speed (measured in Hertz [Hz]) measures the speed at which electrical signals pass through the processor
- ► CPUs must be kept cool, generally using a heatsink and fan



CPUs - transistors

32 nm Planar Transistors

22 nm Tri-Gate Transistors



CPUs - Moore's Law

- ► Gordon Moore (Intel co-founder) stated in a 1965 paper:
 - 'The number of transistors on a single integrated circuit doubles approximately every 18 months, while the price remains the same.'
- **▶** So...
 - ▶ In 3 years, CPUs will be 4 times faster
 - ▶ In 15 years, CPUs will be 1000 times faster

CPUs - Moore's Law

- ▶ Moore's Law has been an important guide for many aspects of the tech industry, especially in CPU manufacture
- ➤ We're finding it more difficult to keep up with Moore's Law as we reach the limits of our fabrication technology

CPUs - other measures

- ▶ Power efficiency and heat are just as important as clock speed
- ► Modern CPUs have multiple cores, increasing their processing capacity
- New kinds of processors, such as system on chip (SoC) are commonly used in mobile and embedded devices

Wirth's Law

▶ Niklaus Wirth stated in 1995 that 'software gets slower more rapidly than hardware gets faster'

Primary memory

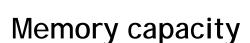
- ▶ Used to store data for quick access by CPU
- ► Main form of primary memory is Random Access Memory (RAM)
- ► RAM is volatile memory
- ► More RAM improves a computer's speed by providing more quick access memory
- ► Capacity is measured in bytes, clock speed measured in Hz
- ▶ Many types of RAM; common type is DDR3 SDRAM

Secondary memory

- ▶ Used to store files for repeated access over time
- ► Also known as non-volatile storage; the storage medium retains its contents without electricity
- ▶ Many forms of secondary storage:
 - ► Hard disk drive (HDD)
 - ► Solid state drive (SSD)
 - ► CDs, DVDs, Blu-ray
 - ► USB drives, external HDDs

Hard Disk Drive (HDD)

► Stores data on spinning magnetic disks. Data is read and written by moving heads


- ► Advantages:
 - ▶ Cheap storage medium
 - ▶ Widely used and supported
 - ► Can have very large capacity drives
 - ► Long operating life
- ▶ Disadvantages:
 - ▶ Noisy operation
 - ► Can consume more power than SSDs
 - ▶ Fragile, needs to be handled carefully

► Stores data on flash memory, the same technology used by USB drives

- ► Advantages:
 - ► Silent operation
 - ► Higher read/write rates when compared to HDDs
 - ▶ Low power usage
 - ► More durable
 - ▶ Use less space
- ▶ Disadvantages:
 - ► Costlier than HDDs
 - ► Can wear out faster than HDDs

Measured in bytes

Plain Text (approx.)

1 byte
 1 character - using ASCII standard for encoding
 1 KB
 13 lines/1000 characters in our course notes

- 1 MB 300 pages

- 1 GB 175 phone books

Music (approx.)

- 1 GB 2 hours

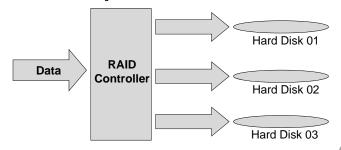
DVD (approx.)

1 GB 20 minutes

Expansion cards

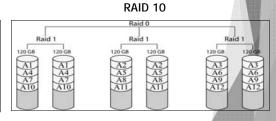
- ► Additional circuit board that provides extra functionality
- ► Examples: sound card, graphics card, network card
- ▶ Plugged into motherboard using slots that follow certain standards:
 - ► ISA
 - ▶ PCI-E
 - ► AGP

Graphics card


- ► Used to perform graphics processing and run the computer's monitors
- ► Consists of:
 - ► GPU (built-in/discrete)
 - ▶ Video memory
 - ▶ Heatsink and fan
 - ▶ Ports

Redundant Array of Independent Disks (RAID)

- ► RAID pools HDDs/SSDs together to form a larger, more reliable data storage mechanism
- ► Each RAID configuration has its own strengths and drawbacks
- ► RAID is commonly used in servers



RAID configurations

- ► Numerous configurations, we're focusing on two:
 - ▶ RAID 0 data stripes used to increase speed
 - ▶ RAID 1 data redundancy used to increase reliability
- ▶ RAID 10 combines RAID 0 and RAID 1 together

Input devices

- ► Peripherals that enables the user to provide information to the computer
- ► Common input devices:
 - Keyboard
 - ▶ Mouse
 - ▶ Webcam
- ▶ Other input devices:
 - ▶ Voice recognition
 - ▶ Biometric scanners
 - ► RFID tags

Output devices

► Peripherals that present information processed by the computer to the user

- ▶ Output devices include:
 - ► Computer monitor
 - ▶ Printer
 - ► Speakers
 - ▶ Touchscreens
- ▶ New forms of output include:
 - ► Virtual reality

Connectors and buses

► All peripherals are connected to the motherboard via ports

- ▶ Ports form part of a bus
- ▶ Wired connections:
 - ▶ USB (Universal Serial Bus)
 - ▶ Firewire and Thunderbolt high speed buses
 - **▶** Ethernet
 - ▶ VGA, DVI and HDMI for monitors
- ▶ Wireless connections:
 - ▶ Wi-Fi
 - ▶ Bluetooth

Computer specs

- ► How much primary memory does this computer have?
- ▶ How many cores does the processor have?
- ▶ Does this computer have a motherboard?
- ▶ Does this computer have a graphics card?

Inspiron M301z

Get extra memory & power for faster multitasking on the

- AMD Athlon™ II Neo K345 Dual-Core Processor
- Genuine Windows® 7
 Home Premium 64bit
 (English)
- 4GB (2 X 2 GB) 2 DIMM DDR3 1333Mhz (operating at 800MHz)
- 320GB 7200RPM Hard Drive
- 13.3 HD WLED True Life (1366x768)
- Integrated ATI Mobility Radeon™ HD 4225

Online Price

\$1,0995

Summary

- Computers process input from the user and other sources and provide output
- ► Computer systems are designed using the principle of modularity
- ► System units are made up of a number of components working together:
 - ► Power supply
 - ► Motherboard
 - ► CPU
 - ▶ Primary and secondary memory
 - ▶ Connectors and buses

