Teaching staff

COMPSCI 111 / 111G

Mastering Cyberspace: An introduction to practical computing

Andrew Luxton-Reilly (Lecturer)

- Rm: 303.479
- Ext: 85654
- Email: andrew@cs.auckland.ac.nz
- Open door policy
- Office hours: Thurs, Fri 11am 12:30pm

Hans Guesgen (Lecturer)

- Rm: 303.379
- Ext: 88815
- Email: hans@cs.auckland.ac.nz
- Office hours: Mon, Wed 2pm 4pm

17/07/2006

COMPSCI 111/111G - Lecture 01

Teaching Staff

Ann Cameron (Lab Tutor / Course Coordinator)

• Rm: 303.594

Introduction

Digital Information

- Ext: 84947
- Email: ann@cs.auckland.ac.nz
- Office hours: Mon 10am 12 noon, Wed 1pm 3pm

Course Ground Rules

COMPSCI 111/111G - Lecture 01

Behaviour

17/07/2006

- Respect other people
- · One person speaks at a time
- · Questions welcome any time
- · Answers expected when questions asked

Active learning

- · Expect you to think
- · Expect you to work on exercises

Expect you to keep up with the class

- · Read Internet resources regularly
- · Find out the answers to questions

Independent Learning

Experimentation

17/07/2006

Course Content

Introduction

• Digital Information, Hardware, Software

Internet

- WWW, Email, Instant Messaging, Forum, Blog, Wiki
- Social issues and risks

Home / Office Applications and Publication tools

- Word Processing, Spreadsheets, Databases
- HTML, PowerPoint, LaTeX

Programming

Python

Special Topics

17/07/2006

• Research areas in Computer Science

Course Requirements

Required reading

- No textbook for this course
- Coursebook is required \$25
 - Available from Student Resource Centre in basement of building 303
- Online sources

Assessment

17/07/2006

- Labs 15% Practical
- Test 20% Theory
- Exam 65% Theory
- Must pass both practical and theory

Class Representative

COMPSCI 111/111G - Lecture 01

Laboratories

COMPSCI 111/111G - Lecture 01

Overview

- · Designed to provide practical experience
- Challenging / varied range of software
- Prepare for labs by reading the coursebook thoroughly
- Friendly atmosphere. Talk to other students.

Assessment

- Compulsory three hour lab each week (starts in week 02)
- 10 labs, worth 1.5% of final grade each
- Must complete a lab report before the start of the following lab.

Locations - All labs

• 303.131 - Old Tutorial Lab (OTL)

Study

Time management

- 10 hours per course
 - 3 hours lectures
 - 3 hour lab
 - 4 hours reading

Internet resources

- http://www.cs.auckland.ac.nz/compsci111s2c/
- http://en.wikipedia.org/

People

- Students
- Tutors
- · Teaching Staff

5

Problems?

Everyone has problems sometimes

- Friendly department
- Happy to discuss options
- Come and talk to us :)

Getting started

17/07/2006

- Find the OTL
- Log in to the computers
- Meet Ann Cameron
- Available in OTL from 2 3 on Monday, Wednesday and Friday this week.

Digital Information

Information in real world is analogue

- Continuous signal
- Weight

Information stored by a computer is digital

- Represented by discrete numbers
- Weight

http://en.wikipedia.org/wiki/Digital

COMPSCI 111/111G - Lecture 01

Encoding information

Any information can be encoded using numbers

• Paint by numbers

Storing numbers in a machine

COMPSCI 111/111G - Lecture 01

Series of dials

17/07/2006

- Each dial goes from 0 to 9
- Store information digitally
- Decimal system

9

Exercises

Switches

All of the following questions relate to dials that have 10 different states (0-9). $\Im \stackrel{@}{=} 7$

- Exercise: Given a machine that used 4 dials, how many different numbers could we represent?
- Exercise: If we wanted to represent 123 different colours, each encoded as a different number, how many dials do we need?
- Exercise: If we used numbers to represent each letter of the alphabet, how many dials would we need to store a single letter?

A dial is complicated.

- Each dial has 10 different states (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
- · Physically creating the circuits is complicated

Switches are simple

- Each switch is off or on (0 or 1)
- · Physically creating the circuits is easy

COMPSCI 111/111G - Lecture 01 COMPSCI 111/111G - Lecture 01 17/07/2006 13 17/07/2006 14 **Binary Binary digits (bit)** Binary number system Each switch is known as a binary digit, or bit • Off represents 0 • A bit can be either 0 or a 1 • On represents 1 We use them in groups 3 bits 2 bits http://en.wikipedia.org/wiki/Bit http://en.wikipedia.org/wiki/Binary numeral system

COMPSCI 111/111G - Lecture 01

17/07/2006

15

COMPSCI 111/111G - Lecture 01

Storing information

Measure the amount of information we can store

· Bytes are the unit of measurement

A byte holds a single number between 0 and 255 inclusive

- 256 different possible numbers
- Very small amount of information

Talking about bytes

- 450 bytes
- 50,000 bytes
- 3,932,160 bytes (1280 x 1024 x 3)

Decimal Prefixes

Decimal prefixes

10 ⁿ	Prefix	Symbol	Decimal	
10 ⁰	none		1	
10 ³	kilo	k	1000	
10 ⁶	mega	М	1,000,000	
10 ⁹	giga	G	1,000,000,000	
10 ¹²	tera	Т	1,000,000,000,000	
10 ¹⁵	peta	Р	1,000,000,000,000,000	
10 ¹⁸	exa	E	1,000,000,000,000,000,000	
10 ²¹	zetta	Z	1,000,000,000,000,000,000,000	
10 ²⁴	yotta	Y	1,000,000,000,000,000,000,000,000	

http://en.wikipedia.org/wiki/SI_prefix

17/07/2006	COMPSCI 111/111G - Lecture 01	21	17/07/2006	COMPSCI 111/111G - Lecture 01	22

Using prefixes in Computer Science

Situation is very confused

• Designers of computers use multiples of 2

Incorrect, but in common useage

- 8 bits = 1 Byte
- 1024 B = 1 KB
- 1024 KB = 1 MB
- 1024 MB = 1 GB

Also in common use is the decimal usage

- 8 bits = 1 Byte
- 1000 B = 1 KB
- 1000 KB = 1 MB
- 1000 MB = 1 GB

Usage depends on industry conventions

23

COMPSCI 111/111G - Lecture 01

http://en.wikipedia.org/wiki/Binary_prefix

Binary Prefixes

Binary prefixes

2 ⁿ	Prefix	Symbol	Decimal	
2 ⁰	none		1	
2 ¹⁰	kibi	Ki	1024	
220	mebi	Mi	1,048,576	
230	gibi	Gi	1,073,741,824	
240	tebi	Ti	1,099,511,627,776	
2 ⁵⁰	pebi	Pi	1,125,899,906,842,624	
2 ⁶⁰	exbi	Ei	1,152,921,504,606,846,976	
270	zebi	Zi	1,180,591,620,717,411,303,424	
280	yobi	Yi	1,208,925,819,614,629,174,706,176	

Exercises

Summary

Exactly how many	y bytes is there in 1 KB?		Any information c	an be digitized			
Exactly how many bytes is there in 1 KiB?			 Simply decide how to encode the information using numbers Computers use numbers to store all information 				
Which is bigger, 1	Which is bigger, 1000 KiB or 1 MB?			Computers are built with hardware that uses binary numbers			
			Unit of measurem Computer ir New units c New units w 	ent for information is a Byte adustry uses decimal prefixes correctly and inc reated to prevent confusion ill become more common over time	correctly		
17/07/2006	COMPSCI 111/111G - Lecture 01	25	17/07/2006	COMPSCI 111/111G - Lecture 01	26		