
Algorithms
for Picture Analysis Lecture 09: Euclidean Distance Transform

Medial Axes

The medial axis of a planar region S consists of all centers of
maximum disks in S. (A maximum disk is one that is not
contained in a larger disk which is also contained in S.)

Left: a set in the Euclidean plane and its medial axis. Middle:
the Gauss digitization of this set at some grid resolution. Right:
illustration of an expected outcome when calculating the medial
axis. The chosen grid resolution restricts the complexity of the
medial axis. In the real plane, any cavity “splits” the medial axis
into two branches.

The use of the medial axis for picture analysis has been
proposed by H. Blum in 1967, and in 1968 by L. Calabi and W.
E. Hartnett.
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Example in the Grid

result of a d4 distance transform:

Local maxima of distance values (within the 4-neighborhood of
a pixel) are the centers of maximum disks.
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For grid metric dα, pixel p, and k ≥ 0, we have balls

B(k)
α (p) = {q : dα(p, q) ≤ k}

Thus: B
(0)
α (p) = {p} ⊂ B

(1)
α (p) ⊂ B

(2)
α (p) ⊂ · · ·

α = 4: B
(k)
α (p) is a diagonally oriented square centered at p

α = 8: B
(k)
α (p) is an upright square centered at p

If p ∈ 〈P 〉 = P−1(1) and k < dα(p, 〈P 〉), then B
(k)
α (p) ⊆ 〈P 〉, and

all of the B
(k)
α (p)s contain p, so 〈P 〉 is the union of all balls

B
(k)
α (p) with p ∈ 〈P 〉 and k < dα(p, 〈P 〉).

In the dα distance transform of P , each pixel p of 〈P 〉 has value
dα(p, 〈P 〉).

Definition 1 Pixel p belongs to the medial axis Mα(〈P 〉) of 〈P 〉 iff
dα(p, 〈P 〉) is a local maximum of the dα distance transform of P

within the α-neighborhood of p.

The picture in which the value of p is dα(p, 〈P 〉) if p ∈ Mα(〈P 〉)
and 0 otherwise is called the dα medial axis transform (MAT) of
〈P 〉.
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Medial axis transforms for distance transforms (d4 and d8 as
shown in Lecture 08 for this set). Left: d4. Right: d8.

The pixels of Mα(〈P 〉) are centrally located in 〈P 〉, so they
constitute a kind of “skeleton” of 〈P 〉. This skeleton may not be
connected even if 〈P 〉 is simply connected, and it may be two
pixels thick if 〈P 〉 has even width.

The MAT was originally described as result of a “prairie
fire” ignited along the border of 〈P 〉 and defined
M(〈P 〉) as the locus of points at which the grass fire
meets itself. However, a pixel on the medial axis is not
necessarily characterized by two different shortest
α-paths from p to 〈P 〉.

MAT following a Euclidean distance transform are in general
closest to our “expectations”.
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Euclidean Distance is the ‘Ideal Case’

Danielsson’s Algorithm

(designed for calculating a Euclidean distance transform in
which the distances differ from Euclidean distance by at most a
fraction of the grid constant; published in 1980)

To each pixel p = (x, y) of P the algorithm assigns a pair
f(x, y) = (u, v) of integers that is initially

(0,0) if p ∈ 〈P 〉 = P−1(0) and

(D,D) if p ∈ 〈P 〉, where D is greater than the diameter
of P (the greatest distance between any two pixels of P ).

We then scan P and update the f(x, y) = (u, v) values as
described in the algorithm on page 7. The intention is that
finally

√
u2 + v2 is the minimum Euclidean distance between

p = (x, y) and pixels in 〈P 〉.
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The min-Operation in the Algorithm

In the algorithm we use an operation min{(u1, v1), (u2, v2)} =

(u1, v1), if u2
1 + v2

1 < u2
2 + v2

2

(u2, v2), if u2
2 + v2

2 < u2
1 + v2

1

(u1, v1), if u2
1 + v2

1 = u2
2 + v2

2 and u1 < u2

(u2, v2), if u2
1 + v2

1 = u2
2 + v2

2 and u2 ≤ u1

Three Scans in Both Steps

The algorithm (on the next page) lists two steps. In each step,
we have three successive scans of all pixels. The orientation of
coordinate axes is as shown below:

Let P be defined on Gm,n = {(x, y) : 1 ≤ x ≤ m ∧ 1 ≤ y ≤ n}.

In the first scan of Step 1 (top to bottom, left to right), we
compare the pair f(x, y) with the pair f(x, y − 1), for all
p = (x, y) in the picture. We assume that all grid points outside
of Gm,n have value 0, and have been initialized by
f(x, y) = (0, 0). Thus we are able to start the comparisons in
row 1 by comparing with these assumed values in row 0. –
Analogously we proceed in the other scans.
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Step 1 (Scan 1) For each pixel of P (from top to bottom, from
left to right), replace each f(x, y) with

min{f(x, y), f(x, y − 1) + (0, 1)};

(Scan 2) then replace in a second scan (from top to bot-
tom, from left to right) each f(x, y) with

min{f(x, y), f(x− 1, y) + (1, 0)};

(Scan 3) then replace in a third scan (from top to bot-
tom, from right to left) each f(x, y) with

min{f(x, y), f(x + 1, y) + (1, 0)}.

Step 2 (Scan 1) For each pixel of P (from bottom to top, and,
e.g., from left to right) replace each f(x, y) with

min{f(x, y), f(x, y + 1) + (0, 1)};

(Scan 2) then replace in a second scan (from left to
right, and, e.g., from top to bottom) each f(x, y) with

min{f(x, y), f(x− 1, y) + (1, 0)};

(Scan 3) then replace in a third scan (from right to left,
and, e.g., from top to bottom) each f(x, y) with

min{f(x, y), f(x + 1, y) + (1, 0)}.
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Note that Scans 2 and 3 in Steps 1 and 2 are identical. In all
scans we use the assumption that pixels outside of Gm,n have
value 0, and stay with f(x, y) = (0, 0) all the time.

When the scans are complete, we have f(x, y) = (u, v) at pixel
p = (x, y), and the value of u should be the difference between
the x coordinates of p and the nearest pixel q of 〈P 〉, and the
value of v should be the difference between their y coordinates.

The Euclidean distance between p and q would then be√
u2 + v2.

Unfortunately, this is not always the case; the f(x, y) values are
not always exactly equal to the nearest-pixel coordinate
differences.

Page 8 February 2005



Algorithms
for Picture Analysis Lecture 09: Euclidean Distance Transform

In this example, the calculated (f(x, y) values are all correct.

Left: the pair of (final) values at a pixel of 〈P 〉 are its x and y

coordinate differences from the nearest pixel of 〈P 〉. Right:
corresponding values of the Euclidean distance, rounded to two
decimal places.
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Sometimes we have triples a, c, d of integers such that
a2 = c2 + d2 (see figure for a = 5; c and d are not shown and are
c = 3 and d = 4).

Assume that q, r, s are points in 〈P 〉, p, p1, p2 are points in 〈P 〉,
and that there is no other point in 〈P 〉 which is closer to p than
Euclidean distance b. Note that b < a + 1 (due to triangularity of
the Euclidean metric).

In this case, the algorithm generates value f(p) = (0, a + 1) and
thus the distance value a + 1. Actually, it should be the distance
value b. (Note: there are more cases where this algorithm does
not calculate the correct Euclidean distance.)
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Independent Row and Column Scans

Initialization: f(x, y) = 0 for (x, y) ∈ 〈P 〉, and f(x, y) = D (D as
on page 5) at pixels (x, y) ∈ 〈P 〉 (note: f(x, y) is now just a
scalar); f is a picture of the same size m× n as P , and we also
use a 1D array g of size n (note: n is the number of rows).

Step 1 (Rowscan 1) Replace (each row from left to right) each
f(x, y) with min{f(x, y), f(x− 1, y) + 1};
(Rowscan 2) then replace (each row from right to left)
each f(x, y) with min{f(x, y), f(x + 1, y) + 1}.

Step 2 (Columnscan) For each column x, do
(i) for 1 ≤ y ≤ n calculate

g(y) = min{
√

f(x, i)2 + (y − i)2 : 1 ≤ i ≤ n};

(ii) replace column x in array f by g (i.e., f(x, y) by
g(y)).

Efficiency improvements: you may decide not to use the root
when calculating g(y); you do not have to go further than
f(x, y) up or down when calculating the minimum; if f(x, i) = 0
then you do not have to consider values above (below) i.

This algorithm is a Euclidean distance transform (see, e.g., T.
Saito and J.I. Toriwaki, 1994). (The article has been cited, but
the algorithm is not in the textbook.)
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Coursework

Related material in textbook: Sections 3.4.4 and 3.4.3.

A.9. [5 marks] Discuss the Euclidean distance transform (i.e.,
independent row and column scans) by

(i) an argumentation why it is always correct,

(ii) an example of a low-resolution binary picture where you
illustrate the calculated values in array f after the two
rowscans, and after the final minimization in each column,

(iii) discuss the time complexity of your implementation of this
algorithm for binary pictures of size 2n × 2n, for n = 6, . . . , 10
(optionally, you may also discuss the three suggested ways for
optimization),

(iv) calculate for a few selected pictures the MAT based on the
Euclidean distance transform (see Appendix of this lecture).

Hint: for (iv) you detect local maxima in N8(p), where the
distance difference along isothetic edges can be 1, but along
diagonal edges you allow a difference of

√
2.
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Appendix: Euclidean MAT

The MAT for the Euclidean distance transform requires a
modification compared to Definition 1 on page 3 (Lecture 09).

Definition 2 Pixel p belongs to the medial axis Me(〈P 〉) of 〈P 〉 iff
de(p, 〈P 〉) is greater than de(q, 〈P 〉)− 1, for all q ∈ A4(p), and
greater than de(q, 〈P 〉)−

√
2, for all q ∈ A8(p) \A4(p).

Example: de(p, 〈P 〉) = 5 and maximum de(q, 〈P 〉) = 5.5, for all
four points q ∈ A4(p): A step along an isothetic edge is of length
1, i.e., these values would still allow that p is a center of a
maximum disk. — Maximum de(q, 〈P 〉) = 6.2, for all four
points q ∈ A8(p) \A4(p): A step along a diagonal edge is of
length

√
2, i.e., these values would still allow that p is a center of

a maximum disk.

Left: Euclidean distance transform. Middle: Euclidean MAT.
Right: Removal of all 1s (considered to be “noise” along
borders), and local maxima in 8-neighborhoods are labeled by
gray squares.
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