

Model Driven Design and Implementation of Statistical Surveys

Chul Hwee Kim1, John Hosking1 and John Grundy1, 2
Department of Computer Science1 and Department of Electrical and Computer Engineering2,

University of Auckland, Private Bag 92019, Auckland, New Zealand
{ckim001@ec | john-g@cs | john@cs}.auckland.ac.nz

Abstract

We describe the evolution of a statistical survey design
visual language from a standalone design-time modelling
language into an environment supporting design,
coordination, execution and publication of complex
statistical surveys. This involved, firstly, elaboration of
the notation to support additional requirements, notably
in the area of task modelling. Secondly, tool support has
been extended to allow association of model components
with survey artefacts, such as data sets, metadata, and
statistical package analysis procedures, with the ability to
then execute elements of the survey design model to
implement the survey analysis. This permits rapid
exploration of statistical questions, together with the
ability to publish both analysis results and the techniques
and processes used, the latter in the form of executable
web services and generated documentation. Thirdly, we
have undertaken a usability evaluation with a target end
user sample that demonstrates strong satisfaction with the
tool.

Keywords: statistical surveys, visual language, visual
environment

1. Introduction
Statistical surveys have extensive roots running back

to ancient times [10]. The development of probability
theory and mathematical statistics provided a scientific
foundation for statistical surveys [1] and they have
become a valuable and ubiquitous tool for obtaining
trustworthy information about a target population.

Our research concerns practical issues in supporting
survey processes. From a survey practitioner's viewpoint,
statistical computing is well supported by high quality
software packages like R [6], so low-level statistical
technique implementation is not a major operational
concern. However many other aspects such as statistical
metadata [12] [8] heterogeneity in statistical data
semantics [13] and other non-mathematical activities are
less well addressed.

In previous work, we attempted to address this
through development of the Survey Design Language
(SDL) [9], an integrated set of notations aimed at
supporting survey design in the same way UML [14]

supports software development. In this paper, we describe
the evolution of SDL from a set of design notations to a
fully integrated environment that supports design,
implementation and publication of the statistical survey
process. Our hypothesis is that when the semantics of
survey designs are visually specified and modelled in a
visual language the following benefits are obtained:
• Mitigation of communication overheads for both non-

experts and experts. A difficult survey concept can be
represented with a graphical metaphor, an abstraction
isolating low-level details from high-level concepts.

• Harmonisation of disparate operational semantics.
• Model-driven management and execution of the

survey process.
We begin with a brief background before describing

the current state of the SDL notations. We then discuss
the association of resources with SDL elements, the
execution of fully defined statistical techniques and
operations, visualisation of results, and publication of
survey documentation and code. This is followed by
results of a user evaluation of SDL, and a summary.

2. Background
The inception of the large-scale surveys such as the

US census brought enormous managerial complexity
prompting development of statistical computing [3].
Many software packages have been developed to support
aspects of the survey process including SurveyCraft [18]
and Blaise [19] for questionnaire design and response
collection, SAS [16] for complex data analysis and SPSS
[18] for statistical process design. However, such tools are
typically narrow in their focus and the lack of integration
and cross tool support, hindered by the absence of mature
and widely accepted inter-operable standards, are
common sources of difficulty in the survey process.

A small number of tools aim to support the survey
process more generally. ViSta [20] provides a visually
guided and structured environment for data analysis with
multiple visual models to suit various end user groups.
GuideMaps help users carry out data analyses even when
they lack detailed technical knowledge. WorkMaps
visualise a data analysis capturing valuable contextual
information such as analytical steps taken. Task based
organisation is well expressed but there is little support

jgru001
Text Box
In Proceedings of Hawaii International Conference on System Sciences (HICSS 2007).
(c) IEEE 2007. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

for merging tasks to support survey contexts, such as
objectives, and data collection and analysis or for non-
analytic tasks e.g. questionnaire design and metadata
support is lacking. ViSta’s Lisp-based extensions are a
barrier to use given the dominance of S-based languages.
ViSta also has poor back end integration support.

CSPro [4] assists users from the data entry stage to
produce error and inconsistency free data. It supports data
entry, batch edit, and tabulation applications with
powerful logic programming support. It only covers some
stages of the survey process, with no support for sampling
design and data analysis. Thus it is not a solution platform
for users to integrate multi-faceted aspects of statistical
surveys but it is a very capable tool in the areas it covers.

Statistical data and metadata standard initiatives
include Triple-S [8], DDI [5] and MetaNet [12]. These
efforts tend to be localised or discipline-specific, but
understanding them has given us useful insight into
incorporation of statistical data and metadata into SDL.

Our work has been strongly influenced by UML [14],
particularly its use of multiple notations, supporting
multiple modelling spaces [22]. However, the UML is too
software domain-specific for direct use in survey design
[12], but the historical development of UML provides
valuable insight into visual languages that deal with a
complex multidimensional problems. It is no coincidence
that the high level aims of SDL closely parallel that of
UML, viz:

Visualisation: SDL notations and diagrams provide
visual representations of a statistical survey, spanning the
entire survey process, but with each diagram visualising a
specific aspect of the survey.

Specification: the SDL diagrams as a whole assemble
specifications of survey artefacts, their attributes and
relationships and resource descriptions mapping artefacts
to physical resources and services.

Implementation and execution: similar to UML’s
MDA approach, SDL diagrams can generate and
orchestrate software solutions for a statistical survey.

Documentation: SDL can largely automate the
documentation of the survey process.

3. An overview of SDL
Figure 1 shows the relationships between the five

main SDL notations, while Figure 2 shows their use to
model a national crime survey. The development of SDL
from its original form presented in [9] has been strongly
influenced by a Cognitive Dimensions [6] evaluation of
the original tool which assisted us in defining usability
enhancements and notational changes to mitigate issues
raised in the evaluation. Survey diagrams, Figure 2 (a)
support collaborative brain-storming of the overall survey
design. The central element represents the survey, with
contexts (eg survey objectives) and their attributes (eg
individual objectives) linked from it. Survey data

diagrams (b) model datasets, metadata and data operations
(e.g. sampling). The metaphor is dataflow, with data sets
manipulated by sampling operations to generate sampled
data sets. In this example two stage stratification is
applied to an initial population followed by patterned
clustering, to obtain a final dataset. Data diagrams may be
“drilled into” for more detailed information about their
data structures (c). Survey technique diagrams (d) also use
a dataflow metaphor, however, whereas survey data
diagrams perform operations, such as sampling, which, in
a statistician’s eye, modify the data, technique diagrams
describe non-modifying data analysis probes such as
regression analysis or multivariate graphing. They have
undergone significant notational change from [9], in
particular supporting flow between techniques. In (d),
various regression analyses are performed on a dataset.
Output icons represent visual outputs, e.g. graphs,
resulting from a technique. Survey task diagrams (e), an
addition to SDL since [9], hierarchically represent tasks
undertaken in the survey. They may be instantiated from a
template representing a reusable survey design and can be
viewed as a specialisation of Sutcliffe’s task model [21].
Tasks may be associated with (bound to) survey artefacts
such as data sets and reports (see bottom of the diagram).

Diagram Relationships Detail

Survey
Diagram

Task Diagram

A survey context consists
of survey tasks

Task
Diagram

Process Diagram
Technique Diagram
Data Diagram

A survey task may use
technique & data diagrams.
Survey tasks are survey
process participants.

Technique
Diagram

Task Diagram

Survey task’s functional
goals can be modelled in
technique diagrams.

Data
Diagram

Task Diagram

Survey task’s functional
goals can be modelled in
data diagrams.

Process
Diagram

Task Diagram

Tasks exist in relationship
to the survey process.

Figure 1: Relationships between SDL diagrams

Survey process diagrams (f) model the dynamic
relationship between tasks, replacing the survey analysis
diagrams of [9]. These aggregate tasks into stages (thin
arrows), and represents both flow between stages (thick
arrows) and use of task outputs as inputs to subsequent
stages (diamond end connectors). Here, the initial task
involves a study of the population profile as a precursor to

Figure 2: Example SDL diagrams

stage 1, selection of a population sampling method. The
result of the selection task is an input to stage 2, where 2
types of data analysis aim to understand both socio-
economic effects on victimisation and public awareness.
Process diagrams can be “drilled into” to understand
detailed relationships between a stage’s tasks (g).

4. From modelling to execution

We have made major tool enhancements to support
implementation and coordination of surveys designed

using SDL. This is via mechanisms to: associate
statistical artefacts with SDL model elements; execute
bound statistical techniques and operations; visualise
results; generate survey documentation; and export
standalone executables as web services. This means that
out SDL Tool provides comprehensive, integrated
support for all phases of the survey process.

a b

c

d e

f

g

Figure 3: Binding statistical resources to SDL elements

4.1 Binding artefacts
Binding operations map SDL icons to external

resources (Figure 3). Menus associated with graphical
icons (a,b) initiate resource mappings (dataset and
technique resp). Mapping forms are generated for the user
to complete (c,d), with many fields automatically filled,

inferred from dataflow and other bindings (maintaining
inter diagram consistency). Aspects of the icon related to
the mapping appear in separate view tabs where the user
can view or edit the resource, eg a data structure (e), data
set (f) or metadata description (g). A fully mapped SDL
icon has a thicker border indicating readiness to execute.

a b

c d

e f g Population sample
relationship

Data table

Triple-S
Meta Data

Figure 4: Execution of statistical technique diagram

4.2 Execution
When a survey data or technique diagram is mapped to all
required statistical resources the user can execute it in
real-time and explore its textual and visual outcomes.
Figure 4 shows a typical diagram execution sequence. A
completed survey technique diagram has all required
graphical icons mapped to appropriate resources (a). Each
technique or data operation icon has a button interface
used to execute the specification (with icon colour change
indicating successful execution). Following execution, the

user may select the output port of the executed technique
or operation and probe into available outcomes as shown
in (b) through (f), all from within the SDL Tool
environment, providing an integrated design,
coordination, and implementation environment for the
statistical survey. The environment is thus live, providing
good progressive evaluation support, with the ability to
try out techniques and operations as they are defined and
bound to appropriate resources.

a b

c

d e

f

g

h

i

4.3 Documentation and Publication
Documentation is important in managing the survey

process. Our tool can generate documentation in a form
accessible to third-party tools or clients allowing them to
understand the semantics of our visual diagrams without
the need for the prototype tool. Figure 4 (g,h) show
generated HTML documents describing a dataset and
statistical technique respectively, as specified in (a).
When the user is satisfied with the correctness of a
diagram, it can be “published” by turning it into Java code
and exposing it in the form of a web service, further
eliminating the need to have the tool environment
executing in order to understand the survey and
promulgate its results. To do this, a web service
generation template is used to process the diagram with
generated code stored in a web services repository hosted
by an Axis server. Clients can access the service
specification via a WSDL interface. Exposure as a web
service provides platform independent access to survey
results. For example, Figure 5 (i) shows a .NET program
using the java-implemented statistical technique of Figure
5 (a) via its web service interface.

5. Metamodel and Semantic Layer
An SDL metamodel is the result of a process of

abstraction, classification, and generalisation on the
collection of SDL visual models in a similar fashion to
Model-Driven Architecture [11]. Metamodels are the
products of the model reification process, and this process
deals not just with physical files that persists visual
models but also real-time user interactions that may not be
persisted. Binding of a graphical element (e.g. hexagon
shape representing a statistical technique), which is only
an abstract entity, to a real-world resource (e.g. Web
service, R computation procedure, etc) is one such case.
Figure 5 show a structural overview of the metamodel
layer synthesised from the various SDL diagrams. Visual
icons at the visual layer are mapped into instances of
metamodel entities derived from these entity types.

M M E n tity

M M E n tity
T y p e

M M
R e la tio n s h ip

M M
R e la tio n s h ip

T y p e

M M
A ttr ib u te

A ttr ib u te
T y p e

0 ..*

0 . .*

D ia g ra m

D ia g ra m
T y p e

1

*

C h ild a ttr ib u te s

P a re n t
A ttr ib u te s

0 ..*

0 ..*

0 ..*

1

Figure 5: Structural SDL meta model

In order to integrate the SDL model as expressed by
multiple SDL diagram types we need to understand the
relationship between elements in each diagram. Figure 1
showed the high level relationship between diagrams. At a

finer grained level, our approach in integrating the five
diagram metamodels uses two main constructs: inter-
diagram relationship and survey entities. Inter-diagram
relationships lay down a broad inter-diagram network and
survey entities belong to the network of the diagrams. A
survey entity can be defined as follows:
• A survey entity can be a survey task, dataset,

technique or non-connector graphical entity in the
visual environment.

• A survey entity has its own unique identity though
they may appear non-distinguishable visually. E.g.
two dataset icons look the same but they are mapped
to two unique survey entities.

• A survey entity belongs to at least one visual model.
• Inter-diagram relationships positively imply the

existence of at least one survey entity which is shared
by more than one diagram. In other words, a shared
survey entity completes an inter-diagram relationship.

Survey entities thus provide the basis for both model

integration (in the meta modelling process) and inter
diagram consistency (at an operational level). The
overlapping survey entities act as integration points to
merge related views for a target domain, as visualised by
Venn diagrams in Figure 6.. Users or tools can transverse
the network of related diagrams by using overlapping
survey entities as entry/exit points.

Figure 6: Inter diagram mappings

The necessity for an additional semantic layer comes
from SDL tool support. SDL diagrams as communication
media from the perspective of human users require no
explicit semantic support. However SDL diagrammatic
notations anticipated the development of supporting tools
and a model-based approach for generating services. Our
current proof-of-concept tools do not fully utilise the

semantic layer, relying instead on static rule based
reasoning to infer model semantics from the metamodel
layer. However the semantic layer will be the primary tool
for extending the language base of SDL thus we include a
brief description here for completeness.

The SDL semantic layer is primarily organised by
topic maps [15]. Topic maps offer heterogeneous
information repositories [2] to tie the underlying semantic
of the metamodel to real world statistical survey topics.
The primary constructs in SDL diagrams such as dataset
entities are organised into topics and they are explicitly
related to the overall conceptual structure of SDL by
means of association and instance membership (see
Figure 7). The ontology layer consists of taxonomies of
statistical techniques, metamodel structures and relational
templates to bind the metamodel to the semantic layer.

Survey

Survey view Task ViewData View Technique View

Stat Data

Technique
Data Op.

is-a
spe

ct-o
f

is-
pa

rt-
of

is-
pa

rt-o
f

SSS
Data structureRaw dataset

is-aspect-o
f

is
-p

ar
t-o

f

study

Axis WS R

Technique
outcomesproduces

...

SDL Service

is-im
plem

ented-as

is-im
plem

ented-as

is-
pa

rt-
of

...

...
is-aspect-of is-aspect-of

...

Figure 7: Partial topic map representation of SDL

If all important aspects and diagrammatic notations of
SDL are considered to be “topics”, SDL diagrams are
“occurrences” and all inter-diagram relationships are
“associations” then we can visualise topic maps as
providing a unique platform to express the semantic layer.
It is interesting to note that just as we can transverse from
the visual layer to the semantic layer, reversing the
process by having the visualisation of the topic map as a
starting point could potentially be used as the basis for
making SDL an extremely extensible visual language.

The semantic layer creates a structural ontology for
SDL. Hence the structural ontology also provides a
template for which mapping operations to bind external
resources (occurrences) with SDL metamodel entities.
One such mapping operation is to turn static visual icons
into dynamic ones, that is to give the icons the
behavioural and functional nature of a widget, and which
can then serve as a dynamic interface to control external
resources. The icon-to-widget mappings for SDL tool
support arise out of the needs to support occurrences
associated with a topic node at the tool level. Thus the

semantic layer also provides a new perspective in looking
at visual tool support from the modelled ontology.

6. Architecture and Implementation
Our SDL tools use an event-driven, loosely-coupled

architecture as outlined in Figure 8. SDL diagrams are
represented as diagram data (or “views”, top left) and a
shared repository (or “model”, top middle) following the
Model-View-Controller paradigm. A set of extensible
components (top right) are used to provide repository
support, external tool integration, model compilation,
execution engine, and a web service generator to make
SDL designs accessible to other users. Brief descriptions
of each of these components can also be seen (bottom).

Component Description
Handlers The first component to handle diagram editor

events and relay them to appropriate
components when it is required.

Model Refinement
Services

Consist of server services to reflect changes
in the visual layer by creating/updating the
metamodel layer.

Repository Service Registrar of SDL service (data operations and
techniques) metadata.

Service Factory Provides a proxy object to enable
communication with a remote service.

Specification
Processor

Translate the underlying diagrammatic model
into execution-ready specifications.

Diagram Execution Executes provided specifications.
Service Generator Generates diagrammatic specifications into

inter-operable services (e.g. Axis hosted web
services)

Figure 8: SDL tool architecture

Figure 9 shows how events are used to couple the
components in our architecture. Changes to diagrams are
sent as event notifications to an “event handler” for the
diagram (1). This passes the event onto a model
refinement service (2) which propagates the event to
components subscribing to the diagram change type e.g.
the Repository Service. The Repository Service translates
SDL data into the dataset file format and updates this (3).
A response event is generated by the service to indicate
success or failure. This event is processed by the model
refinement service (4) to determine if any updates to the

shared SDL model are necessary. If so, these are applied
to the model (5). Such changes may mean other SDL
diagrams sharing the changed model data need updating
(6). This event-based notification mechanism provides
incremental multi-view consistency, persistent repository
support, compilation of SDL models, an execution engine
for diagrams, and an external tool integration platform.

[1] [2] [3]

[4][5]

[6]

Dataset FileRequest

Response
Response

RequestRequest

Figure 9: SDL toolset analysis pipe-line

 We used the Pounamu meta-tool [23] to implement
our SDL multiple-view design tools. Pounamu provides a
set of meta-tools for visually specifying diagram and
model components, view types and event handlers. SDL
was specified as a canonical Pounamu meta-model and a
set of view types, one for each different SDL visual
notation. Each view type (diagramming specification) has
its own set of shapes, connectors and editing constraints.
The SDL diagram editors are realised by Pounamu
interpreting the SDL tool specifications to provide multi-
view and multi-user diagram editors with a shared model.
The Pounamu model produced by the SDL diagramming
tools is used to provide a data-oriented integration
platform to external statistical analysis tools. The
Pounamu SDL shared model is “walked” by Pounamu
“event handlers” developed specifically for each external
tool, transforming it into a format understood by that tool
and the tool is invoked via service factory components.
Handlers also provide presentation and control integration
for external tools allowing results to be displayed in the
SDL tool.

7. Evaluation
In addition to guiding the development of our SDL

tools through ongoing Cognitive Dimensions evaluations,
we have carried out a user survey of the tool involving 3rd
Year Statistics students. The key aims for our user testing
of SDL were: to evaluate the usability of our
diagrammatic notation designs and our software tools in
order to improve the SDL visual language design; to fine-
tune our SDL software tool solutions; and to validate that
research outcomes closely map to our target user
requirements. A further important aim was to study how
our approach to the survey process support would be
perceived by users at a high level and their comparative
views of existing software tools and practices for
statistical surveys.

Eight test subjects participated in the user testing,
chosen out of a potential candidate pool according to
recommendations from a tutor in our Department of

Statistics. All test subjects were invited to attend an
introductory meeting which was designed to convey some
of SDL’s core concepts. All were new to the concept of a
visual environment for statistical surveys but all had good
working knowledge of statistical packages, survey theory
and design in academic or commercial settings.

A wide range of user activities were conducted in each
testing session: pre- and post-demonstration interviews;
diagram comprehension exercises; survey technique
implementations using provided software tools; and
comparative evaluations of SDL and existing statistical
survey support tools. Two types of testing outcome were
compiled: user-completed questionnaires including user
perceptions, opinions and satisfaction regarding the SDL
tools and their own performance; and investigator
recorded performance evaluations, including task
correctness, mistakes, and time to complete given tasks.

Introductory SDL diagrams were based on the 2001
New Zealand Crime Victims Survey to simulate real-life
survey communication problems. Test subjects were
asked to explain the semantics of presented diagrams and
to give feedback on their effectiveness, expressiveness,
usefulness and usability. Activities utilizing the software
tools were to implement survey techniques to produce
solutions for given Crime Victims Survey scenarios. The
scenarios were designed to permit user initiated actions
and task execution.

Even though the test subjects were new to the concept
of using visual language for statistical surveys, the
subjects were able to understand and use diagrammatic
notations to express various aspects of the survey process
and compose statistical techniques to solve test scenarios.
The learning curves of the subjects varied but all of them
were able to comprehend testing diagrams to the level
required for their tasks. Figure 10 summarises the results
of our questionnaire-based survey and performance
analysis providing general quantitative indications on the
usability of SDL and SDL tools.

Category Results

General tool usability

Positive 87.5%
Negative 12.5%

Overall notation usability

Positive 75%
Negative 25%
(half these were only partial negative)

Diagram comprehension
(user performance)

Excellent 62.5%
Good 25%
Average 12.5%
Incomplete 0%

Task completion
(user performance)

Excellent 37.5%
Good 37.5%
Average 12.5%
Incomplete 12.5%

Figure 10: Results of user survey

Key feedback from users was that SDL accentuates
and integrates the multiple aspects of a survey that are

often not addressed by existing practice and tools making
SDL-based solutions more user-centric. Users used the
visual notations not only to formulate numerical
computations but also to convey actual operational
semantics behind those activities. The visual modelling
approach and inter-diagram mappings helped users to
think of a survey project as set of tasks within the context
of the whole survey process and individual survey
constructs to be conceptualized as reusable components.

The effect of the visual approach on comprehension
performance of both high and low level details of the
survey process varied. Each diagram drew different
responses with overwhelmingly positive overall feedback.
Survey diagrams were received well by the test subjects
as being an easy-to-use, expressive and time-effective
alternative to conventional documentation. Task diagrams
were viewed as too radical a departure from existing
practices by two test subjects while the majority of the
test subjects commented that the diagrams visualized a
valuable aspect of the survey process. Survey technique
and data diagrams were both received very favourably.

It was not a trivial task for our users to visualize inter-
diagram relationships and to harmonize disparate
diagrams into a single unified model. Even though test
subjects did very well in comprehending and utilizing
individual diagrams they expressed a slight difficulty in
mapping all the diagrams together. This problem is
analogous to a novice UML user’s difficulty in merging
UML diagrams mentally together to form a unified view.
One of the manifestations of user errors, which can be
traced back to user’s incorrect usage of inter-diagram
mapping, was the introduction of inconsistencies. One
promising solution suggested by the test subjects to
remedy this design issue was the creation of a visual layer
to dynamically illustrate how the underlying model is
formed by the contributing diagrams. The test subjects
responded favourably to the degree of freedom that SDL
tools offer in designing the survey process.

There are no existing tools which have survey and task
diagrams hence the SDL survey technique and data
diagrams were obvious candidates for the test subjects’
comparative reviews. Test subjects noticed that, in
contrast to existing tools, they were not restricted to a
sequential batch mode or an interactive mode which tends
to require high attention investment to articulate a
technique which requires frequently modification. During
manipulation of implemented statistical techniques,
existing tools put emphasis on result oriented step-by-step
batch operations. The data flow metaphor utilized in SDL
survey data and technique diagrams provided users with
design-time freedom to change input and output data
flows and the dynamic mapping of a graphical entity to a
physical dataset or a statistical technique. This meant that
data flows could be routed to multiple techniques in a
variety of ways to easily form variations of initial designs.

Many aspects of the above qualitative and quantitative
measures were further viewed in the light of their
relationships to the Cognitive Dimensions framework.
Key findings from this comparison and analysis were:
SDL provides good Closeness of Mapping to the
statistical survey design process; multiple SDL diagrams
increase Viscosity and Hidden Dependencies but this is
mitigated by high-level visual entities enabling rapid
change; SDL’s Progressive Evaluation is a significant
advantage over existing tools; SDL would benefit from
support for secondary notation on diagrams; current
support for diagram juxtaposability and consistency is too
limited; and SDL diagrams’ multiple levels of Abstraction
assist the statistical survey design process.

8. Summary
We have developed SDL, a set of visual languages for

complex statistical survey design, together with a proof-
of-concept implementation of SDL, integrated with
several off-the-shelf, commonly used statistical analysis
packages. Despite its proof-of-concept nature, we have
successfully carried out a user study with the toolset with
final year Statistics undergraduates on a real-world set of
statistical survey problems. This experiment demonstrated
that SDL’s visual languages and integrative tools
significantly enhance the design and execution of such
surveys. Our current work includes improving layered
diagram structure and the introduction of a diagram to
explicitly relate other SDL diagrams.

We plan to add executable statistical process
diagrams, user scripting via the R language for more
powerful analysis capabilities for expert users, and
repositories for both statistical data and reusable process
models. Further enhancements include secondary notation
support for annotative diagrams, visual presentation of
underlying statistical survey process enactment and data
analysis state, improved visual presentation of mapping
forms, and automatic layout of some diagrams.

Acknowledgements
The authors gratefully acknowledge the assistance of

James Reilly as statistical consultant, our panel of user
evaluators, and Nianping Zhu for implementing the
Pounamu meta tool.

References
[1] Biemer, P.P. and Lyberg, L.E. Introduction to survey

quality Wiley Inter-Science 2003, Ch 2
[2] Biezunski, M Topic Maps at a glance, Proc of XML

EUROPE '99. 26-30 April 1999 Granada, Spain,
OASIS; W3C World Wide Web Consortium, 1999

[3] Chambers, J.M. and Ryan, B.F., The ASA Statistical
Computing Section: A History, The American
Statistician, May 1990, 4(2) pp87-89

[4] CSPro, http://www.census.gov/ipc/www/cspro/

[5] DDI, The Data Documentation Initiative,
http://www.icpsr.umich.edu/DDI/

[6] Green, T.R.G and Petre, M, Usability analysis of
visual programming environments: a ‘cognitive
dimensions’ framework, JVLC 1996 (7), pp.131-174.

[7] Ihaka, R. and Gentleman, R. R: A Language for Data
Analysis and Graphics, J Computational and
Graphical Stats, Vol. 5, No. 3 1996, pp. 299-314

[8] Jenkins, S. G. The Triple-S survey interchange
standard http://www.triple-s.org/sssasc96.htm

[9] Kim, C., Hosking, J., and Grundy, J., A Suite of
Visual Languages for Statistical Survey
Specification. IEEE VL/HCC 2005, 19-26

[10] Madansky A., Journal of Official Statistics, Vol.2,
No.4, 1986. pp. 561-569

[11] Mellor et al 2004 Ch2
[12] MetaNet 2003, Metanet Conference INEAG, Samos,

May 2003
[13] Olenski, J. Global Standard for Harmonization of

Social Statistics, Expert Group Meeting on Setting
the Scope of Social Statistics United Nations
Statistics Division in collaboration with the Siena
Group on Social Statistics New York, 6-9 May 2003

[14] OMG, OMG Unified Modelling Language
http://www.uml.org/

[15] Pepper 2002
[16] SAS Institute Inc. http://www.sas.com
[17] SPSS, SPSS Inc. SPSS statistical software

http://www.spss.com
[18] SPSS Inc., SurveyCraft,

http://www.spss.com/surveycraft/
[19] Statistics Netherlands, Blaise, http://www.cbs.nl
[20] Young, F.W. & Bann, C.M. ViSta: A Visual

Statistics System Statistical Computing Environments
for Social Research., Sage Publications, Inc., 1997,
207-235

[21] Sutcliffe, A. Domain Theory: Patterns for Knowledge
and Software Reuse, Lawrence Erlbaum Associates,
Inc. Mahwah, NJ, USA, 2002

[22] Unhelkar, B., and Henderson-Sellers, B., Modelling
Spaces and the UML, Proc IRMA, New Orleans,
2004

[23] Zhu, N., Grundy, J.C. and Hosking, J.G., Pounamu: a
meta-tool for multi-view visual language
environment construction, Proc VL/HCC’04 Rome,
Italy, 25-29 Sept 2004, pp. 254-256.

