
Interpreting Opacity in the Context of Information-hiding and Obfuscation in
Distributed Systems

Anirban Majumdar Clark Thomborson
Secure Systems Group

Department of Computer Science
The University of Auckland.

Auckland, New Zealand. Private Bag 92019.
{anirban,cthombor}@cs.auckland.ac.nz

Abstract

The concept of opacity has been investigated in two dif-
ferent contexts as means of expressing security properties in
distributed systems. Opacity in the context of information-
hiding assumes the existence of a black-box and is con-
cerned with enforcing properties such as anonymity and se-
crecy on collaborating processes in an untrusted distributed
computing environment. In the context of software obfusca-
tion, opacity is a measure of the difficulty of reverse engi-
neering of object code under the assumption that the adver-
sary has access to grey-box information. In this contribu-
tion, we bring together these two contexts in which opacity
has been defined and discuss how a specialized technique,
called opaque predicates, can deter malicious reverse engi-
neering.

1. Introduction

In a multi-party computation environment, it is impor-
tant to hide sensitive information from unauthorized ob-
servers. Here, we imagine a set of agents executing in an
untrusted distributed computing environment to collaborate
in achieving a particular objective. Examples of such an ob-
jective could be an electronic voting system or an electronic
commerce bidding scenario. In the first example, it might
be required to hide the identity of the agents casting votes.
This property is called anonymity and is a requirement for
information-hiding systems. The second example demon-
strates a case where the bidding agents contain privileged
computation logic and must be protected from an adversary
capable of reverse engineering agent code. This is the prob-
lem addressed by obfuscation.

Halpern and O’Neill [3] analyze information-hiding re-
quirements by answering the following three questions:

What information needs to be hidden? Halpern and
O’Neill have identified several requirements of information
hiding systems, most notably anonymity. Anonymity re-
quires that identity of an agent performing an action be hid-
den from a malicious observer agent. The goal of obfus-
cation is that the algorithm implemented within agent code
and its data be made difficult for an adversary to retrieve.
These requirements are distinct, in that an obfuscated agent
may not be able to act anonymously (in the sense of Halpern
and O’Neill); and an anonymous agent may not need to
be obfuscated (if the system somehow prevents malicious
agents from analysing another agent’s code).

Who does it need to be hidden from? The adversary
agents in the information-hiding model have access to a
very limited portion of the system state vector. The adver-
saries (which may be either agents or humans) in our obfus-
cation model have access to the code of all agents, and to
the system state.

How well does it need to be hidden? Information-hiding
is an all-or-nothing property, much like cryptography. For
enforcing anonymity, for example, if identity of an agent in
the electronic voting system is revealed, security as a whole
is compromised. The proof of security in an information-
hiding system depends on its being able to prevent adver-
saries from reading arbitrary facts from the system state.
Obfuscation is less stringent and provides another layer of
defense. The assumption is that an adversary with suffi-
cient resources will ultimately be able to reverse engineer
the agent code. Even so, the objective is to deter the reverse
engineering process until the lifetime of the agent expires
by making the process of reverse engineering computation-
ally prohibitive.

In the following two sections, we discuss the context,
model the adversary, and show how opacity is enforced

1-4244-0549-1/06/$20.00 ©2006 IEEE.

for expressing security properties in information-hiding and
obfuscated system of mobile agents.

2. Opacity in information-hiding

Halpern and O’Neill [3] provide a comprehensive sum-
mary of existing approaches to express information-hiding
properties using CSP, epistemic logic, and function-view
semantics. In this section, we discuss their newly intro-
duced epistemic logic model since it suits well for describ-
ing information-hiding properties in distributed computing
environment.

2.1. Modeling a distributed system

A distributed system of mobile agents consists of a set of
n inter-communicating agents, denoted by {P1, . . . , Pn},
executing on multiple heterogeneous hosts. These agents
neither share a global clock nor share memory and commu-
nicate only through asynchronous message-passing primi-
tives. Each agent has a local state at a given point in time
[3] and this could be the values of the variables in the agent
code. Collectively, a global state of the system can be de-
fined in terms of a tuple of local states (se, s1, . . . , sn),
where se is the state of the environment and si is agent Pi’s
state for i = 1, . . . , n.

2.2. Modeling the adversary

An adversary is modeled as one capable of observing the
system in execution. For our purpose, we assume a mali-
cious sniffer agent Pa as our adversary. Here, the agent
is programmed to trace the messages exchanged between
other (good) agents and deduce something interesting from
the trace. What characterizes as an interesting property is
dependent on what information-hiding property the agent
owner wants to protect.

Halpern and O’Neill [3] define a run r as a function of
time t to global states of the system. A point is defined as a
tuple (r, t). So, at a point (r, t), the system is in global state
r(t). If r(t) = (se, s1, . . . , sn), then ri(t) = si. The points
defined over a set of runs of the system R is denoted by
P(R). Given this system R, they define a knowledge func-
tion Ka(r, t) as the set of points in P(R) that the adversary
Pa thinks are possible at (r, t). This is formally represented
as:

Ka(r, t) = {(r′, t′) ∈ P(R) : r′a(t′) = ra(t)}

The adversary sniffer agent Pa knows a nontrivial fact ϕ
(something that is not already valid) at a point (r, t) if ϕ is
true at all points in Ka(r, t). This is represented in terms
of an interpreted system I which consists of a pair (R, π),

where R is the system and π is an interpretation that assigns
each predicate (based on certain facts of the system) a true
or false value at each point. So, the fact ϕ true at point (r, t)
is written as (I, r, t) |= ϕ (and I |= ϕ if (I, r, t) |= ϕ for
all points (r, t) in I).

2.3. Modeling anonymity in terms of opac-
ity of interpretation

For the anonymity property of information-hiding to be
satisfied, the interpretation of observation has to be made
opaque. As discussed in the previous section, information
that need to be hidden for enforcing opacity is the identity
of the agent (or the set of agents) which performs any par-
ticular action of interest to the adversary. Thus, if δ(Pi, x)
implies agent Pi performs some action x, then the fact that
Pi performed x needs to be hidden from adversary agent
Pa.

Based on how well anonymity has to enforced, Halpern
and O’Neill proposed two variations of anonymity:

• Action x performed by agent Pi is minimally anony-
mous to sniffer agent Pa in the interpreted system I
if I |= ¬Ka[δ(Pi, x)]. This definition tells that the
fact δ(Pi, x) needs to be hidden from Pa. It is a weak
information-hiding requirement since it suffices if Pa

is not sure that Pi performed action x.

• Action x performed by agent Pi is totally anonymous
to adversary agent Pa in the interpreted system I if

I |= δ(Pi, x) ⇒
∧

i′ �=a

¬Ka[¬δ(Pi′ , x)]

This definition tells that if action x is performed by
agent Pi, then the sniffer agent Pa thinks that x could
have been performed by any of the agents except Pa.

Furthermore, Halpern and O’Neill prove that if an action x
is totally anonymous, then it must be minimally anonymous
as well, provided there are at least three agents in the system
and it must be the case that x is performed only once in a
given run of the system.

3. Opacity in obfuscation

The concept of opacity has been used to obscure under-
standing (for the purpose of malicious reverse engineering)
of mobile agents code executing in distributed computing
environment [4]. Even though Barak et al. in [1] showed
some impossibility results for obfuscation by proving that
every obfuscator will fail to completely obfuscate some pro-
grams, focus has shifted to finding obfuscating constructs

that are difficult but not necessarily impossible to reverse
engineer.

In this section, we discuss one such construct, called dis-
tributed opaque predicates, which provides a way to obfus-
cated mobile agents code in an untrusted distributed com-
puting environment.

3.1. Distributed Opaque Predicates

The concept of opaque predicates was originally intro-
duced by Collberg and Thomborson in [2]. An opaque pred-
icate is a construct with a true/false outcome. The opacity
of these constructs is derived from the difficulty of reverse
engineering their outcome by observation at execution time
of program code.

In the mobile agents scenario, Majumdar and Thombor-
son in [4] define a distributed opaque predicate (Φ) to be an
opaque predicate which depends on local states of agents in
the distributed computing environment for evaluation of its
outcome. Distributed opaque predicates are designed to be
temporally unstable; i.e., it can be evaluated multiple times
at different program points (t1, t2, . . .) in the agent code
during a single run such that its observed values (v1, v2, . . .)
are not identical. Structurally, distributed opaque predicates
are relational and of the form:

Φ : [(a + b + c + . . . + n) � K]

where (a, b, c, . . . , n) are integers whose values are set by
individual agents (this forms the local state), � denotes an
equality (inequality) operator such as ‘=’ (‘!=’) and K
is a constant.

We will use the running example from [4] for the rest of
this section. Given a pool of following integers (forming
the local states of agents),

S = {11, 9, 18, 2, 12, 5, 17, 19, 4, 7, 1, 33}

a dynamic data structure, such as a doubly linked-list, is ini-
tialized with the values in S and passed to three agents in the
system, P1, P2, and P3. We note that only one agent, P1, is
the candidate for obfuscation (checks for the outcome of Φ).
Agents P2 and P3 serve as guards - they communicate with
other agents using message-passing primitives to maintain
the local state of the obfuscated agent in a consistent state.
Local state of each agent, denoted by the pointer location
on its copy of the data structure, changes when sending and
receiving messages. Details of this message-passing tech-
nique and state update rules can be found in [4].

The distributed opaque predicate for this example could
be formed as:

Φ : p1.v + p2.v + p3.v = 27

where p1.v, p2.v, and p3.v denote the local states of agents
P1, P2, and P3 respectively. We note that Φ is satisfied for
the solution vector {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0}; i.e., only
when p1.v = 18, p2.v = 5, and p3.v = 4, for this example.

3.2. Modeling the adversary

The adversary in this context is considered to be more
powerful that the one assumed for information-hiding.
Here, the sniffer agent Pa has grey-box information at its
disposal - in the sense it knows what to observe in the exe-
cution. It is capable of using static analyses for finding out
which particular variables in the agent code constitute its
local state. Based on that, it can use the same observational
capability to capture messages that contain those local state
values. How it might then try to infer the predicate Φ value
from observation traces is discussed in the following sub-
section.

However, restrictions are imposed on observational pow-
ers of Pa by not letting it have access to white-box infor-
mation. This restriction effectively means that Pa cannot
possess sufficient static analysis information that will facil-
itate it to insert debugging probes at obfuscated control-flow
points of the obfuscated agent. If an adversary is allowed to
do this, it can quite easily determine the outcome of dis-
tributed opaque predicates by just tracing probe values dur-
ing execution of the obfuscated agent P1.

3.3. Modeling opacity using distributed
opaque predicates

Opacity of the system is attributed by indeterminacy of
asynchronous message passing. This indeterminacy in turn
induces concurrency within the system. This is illustrated
in figures 1 and 2.

These figures depict event-time mapping of a run. Here,
events can be thought of as message sends and receives.
Each agent changes its local state (by moving the pointer
location on its copy of circular linked-list) when it sends or
receives a message. As we can see from the diagrams, each
agent starts at an initial local state, p1.v = 9, p2.v = 5, and
p3.v = 7. The numbers along the time axis (within square
brackets) denote vector clocks and serve to maintain causal
ordering of messages. Let us see what outcome of Φ the ad-
versary Pa will deduce if it observes the system right after
message labeled n is delivered to P1.

In Figure 1, when message labeled m reaches agent P2,
the vector clock value changes to [0, 1, 1] and P2’s local
state, p2.v, changes from 5 to 17. Agent P3’s local state,
p3.v, changes from 7 to 4. After P2 sends message labeled
n at vector clock [0, 2, 1], its local state reverts to 5. When
the adversary Patries to infer the value of Φ after [1, 2, 1],
the local state values returned from agents P2 and P3 are

n

m

[0,0,1]

[0,1,1]

[1,2,1]

P2 p2.v = 5

p3.v = 7

p2.v = 5

P3

P1

p2.v = 17

p3.v = 4

p1.v = 9 p1.v = 18

[0,2,1]

Figure 1. Ordered message delivery

p2.v = 5 and p3.v = 4 respectively. The local state values
of agents P1, P2, and P3 add up to 27 and thus Φ is satisfied
(true).

n

m

[0,0,1]

[0,1,0]

[1,1,0]

P2 p2.v = 5

p3.v = 7
P3

P1

p2.v = 12

p3.v = 4

p1.v = 9 p1.v = 18

Figure 2. Delayed message delivery

In Figure 2, depicts a case where after the first receive
of message labeled n at [1, 1, 0] by agent P1, it cannot be
guaranteed that the message labeled m from agent P3 orig-
inating at [0, 0, 1] has reached agent P2. This guarantee
cannot be made because of indeterminacy of asynchronous
message-passing. Consequently, agent P2 changes its lo-
cal state to p2.v = 12, the local state values of agents P1,
P2, and P3 do not add up to 27. Therefore, the distributed
opaque predicate (Φ) is not satisfied (false) after the deliv-
ery of message labeled n for Figure 2.

To mount a dynamic observation-based attack, the ad-
versary agent Pa must gather relevant static analysis infor-
mation that would help it trace the local state changes of
individual agents. Majumdar and Thomborson argued that
collecting all relevant static analysis information is impossi-
ble due to the computationally intractable issues of pointer
aliasing problem. Even if the adversary manages to col-
lect all local state information, the problem of global state
monitoring is hard because the global state encoded by the
temporally unstable predicates may not persist long enough
for it to be true when the predicate is evaluated by the ad-
versary.

Alternatively, Pa can sniff the agent interactions for por-
tions of their local states that are referenced in Φ. It should

then sequence each of these local states, one sequence per
process, and build them up incrementally to construct the
global state lattice. The state lattice thus formed is linear in
the number of global states, and the number of global states
formed is O(en) where e is the maximum number of events
monitored and n is the number of agents in the system. If
any global state in the lattice satisfies Φ, the distributed
opaque predicate is said to be detected. Again, Majum-
dar and Thomborson observed that if the number of guard
agents in the system is large and a huge amount of message
passing takes place, the adversary will face the problem of
lattice state explosion. Moreover, failure to include all event
changes would increase the concurrency within the system.
Since there is no computationally inexpensive way for an
adversary to find out if Φ was satisfied for a particular run,
distributed opaque predicates aptly serve the purpose of de-
terring reverse engineering of agent code - quite possible for
the entire lifetime of the obfuscated agent.

4. Conclusions

In this paper, we made a comparative analysis of
the concept of opacity and discussed its use in context
of information-hiding and software obfuscation in a dis-
tributed computing mobile agents scenario.

While information-hiding properties have a sound theo-
retical formalism, obfuscating constructs still lack a solid
theoretical underpinning. In our future work, we will at-
tempt to bridge this gap by trying to adapt the definitions
of opacity in information-hiding to the field of software ob-
fuscation. Relating the concept of distributed opaque pred-
icates to the domain of epistemic logic is also a promising
area worthy to be explored and will be part of our future
work.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im)possibility of obfuscat-
ing programs. In CRYPTO-2001, volume 2139, pages 1–18.
Lecture Notes in Computer Science, Springer-Verlag, 2001.

[2] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In POPL
’98: Proceedings of the 25th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 184–
196, New York, NY, USA, 1998. ACM Press.

[3] J. Halpern and K. O’Neill. Anonymity and information hiding
in multiagent systems. In 16th IEEE Computer Security Foun-
dations Workshop (CSFW 2003), IEEE, pages 75–88. IEEE
Computer Society, 2003.

[4] A. Majumdar and C. Thomborson. Manufacturing opaque
predicates in distributed systems for code obfuscation. In
Twenty-Ninth Australasian Computer Science Conference
(ACSC 2006), volume 48 of CRPIT, pages 187–196, Hobart,
Australia, 2006. ACS.

