
On Evaluating Obfuscatory Strength of Alias-based
Transforms using Static Analysis

Anirban Majumdar, Antoine Monsifrot and Clark Thomborson
Secure Systems Group

Department of Computer Science
The University of Auckland

Auckland, New Zealand Private Bag 92019
Email: {anirban, antoine, cthombor}@cs.auckland.ac.nz

Abstract— Aliasing occurs when two variables refer to the
same memory location. This technique has been exploited for
constructing resilient obfuscation transforms in languages that
extensively use indirect referencing. The theoretical basis for
these transforms is derived from the hard complexity results
of precisely determining which set of variables refer to the same
memory location at a given program point during execution.
However, no method is known for randomly generating hard
problem instances. Unless we are able to evaluate the obfuscatory
strength of these transforms using static analysis tools, we cannot
correlate the resilience expected in theory with what actually
holds in practice. In this contribution, we will outline the main
difficulties in experimentally evaluating obfuscatory strength and
give an overview of techniques that are suited for analysing well-
established alias-based obfuscation transforms.

I. INTRODUCTION

Static analysis is complicated in the presence of aliasing.
Precise and flow-sensitive alias analysis is undecidable in
languages with dynamic allocation, loops, and if-statements
[1]. Based on this observation, several obfuscation techniques
claim the intractability of precise alias analysis as a theoretical
basis for their transforms. Most notable among these are:

• Opaque predicates rely on difficulty of the alias analysis
problem and the shortcomings of the available conserva-
tive algorithms for analysing the control-flow of programs
[1], [2].

• Control-flow flattening techniques which rely on the
NP-hardness of precisely determining the indirect
branch target addresses of dispatchers in the presence of
aliased pointers [3].

• Obfuscation techniques like identifier renaming [4], class
coalescing and class splitting [5] which rely on the
difficulty that in the presence of method-overloading,
precisely determining if there exists an execution path
in a program for which a given reference points to a
given method at a point of the program execution is
NP-complete[6], [7].

Even though these obfuscation techniques are based on
intractable computational problems, we do not know, in prac-
tice, how to arbitrarily generate sufficiently hard obfuscated
problem instances such that all program analysis techniques

would fail (i.e. give imprecise, unanalysable results, or be
unscalable, run out of memory, crash, or never terminate).
Unfortunately, none of the previous authors, while concen-
trating on the performance impact of obfuscation, provided
empirical results of their security analyses. The main hindrance
is the inability to answer the following question: What sort of
analysis tools are useful for the automated understanding of
the code obfuscated with aliasing transforms? Available static
program analysis tools, mostly academic projects, are devel-
oped mainly for program optimisation and not for security
analysis. A supplementary question is: Can general purpose
program analysis tools be used to assess the obfuscatory
strength of aliasing transforms or do we need to develop
customised analysis tools instead? At the same time, even if
we are able to find a suitable tool for one particular technique,
how do we tell that the tool has successfully “cracked” the
obfuscation technique unless we know what an obfuscation
transform is supposed to protect? Can we guarantee that all
general tools of that category (and its improved versions) can
“crack” any general instance of code obfuscated with this
technique?

In this contribution, we will summarise our observations
from our experience with available static analysis tools. We
will start the next section with an outline of alias-based
opaque predicates and their analysis using a pointer analysis
framework and a static slicer. We will conclude the paper with
a description of an emerging technique called concept analysis,
showing how it can be used to analyse the class of obfuscation
techniques which draw obfuscatory strength from overloading.

II. ANALYSING OPAQUE PREDICATES

An opaque predicate is a conditional expression whose
value is known to the obfuscator, but is difficult for an
adversary to deduce statically. A predicate Φ is defined to
be opaque at a certain program point p if its outcome is only
known at obfuscation time. Following Collberg et al. [2], we
write ΦF

p (ΦT
p) if predicate Φ always evaluates to False (True)

at program point p for all runs of the same program. We call
such predicates Opaquely True (False) at program point p. The
notation Φ?

p is used to denote Opaquely Unknown predicate,

1-4244-0716-8/06/$20.00 ©2006 IEEE.

public class Test {
public static void main(String[] args) {

Test x = new Test();
Test a = (Test) id(x);
Test b = (Test) id(x);
if(a==b)

System.out.println("false predicate");
}
static Object id(Object o) {

Test p = new Test();
return p;

}
}

Fig. 1. Example of an opaque predicate needing allocation site sensitive
alias analysis tool to correctly determine its value

i.e. one whose value depends on a program input supplied
by the user, by the operating system, or by some program
such that it sometimes evaluates to true and sometimes to
false during different program executions. The opaqueness of
such predicates is necessary for the resilience of all known
control-flow transformations. Collberg et al. [1] used the
intractability property of pointer aliasing to construct aliased
opaque predicates. Their construction is based on the fact that
it is impossible for approximate and imprecise static analysers
to detect all aliases all of the time.

A. Experiments with an alias analysis framework

We simulated an attack on aliased opaque predicates us-
ing BDDBDDB (Binary Decision Diagram-Based Deductive
DataBase) [11], an alias analysis tool for Java. The objective
was to see what useful information can be obtained by an
adversary equipped with state-of-the art alias analysis tool
such as BDDBDDB.

BDDBDDB is an implementation of Datalog, a declarative
programming language for specifying program analysis. The
tool is context-sensitive, which means it can distinguish be-
tween different calling contexts of a method and thus prevents
erroneous propagation of alias information from one caller to
another of the same method. It is also very scalable and can
scale up to analysis of nearly 700,000 bytecodes. The analysis
is also field sensitive meaning that it can track individual
fields of individual pointers. Flow sensitivity in BDDBDDB
is intraprocedural. The basic approach is the use of cloning.
Cloning generates multiple instances of a method such that
every distinct calling context invokes a different instance, thus
preventing information from one context to flow to another.
Thus, through cloning, context-sensitivity can be generated
using context-insensitive algorithm by applying it to each of
the clones.

BDDBDDB, however, is not allocation site sensitive. Ob-
jects are referred by their allocation sites and since allocation
sites are not context-sensitive, BDDBDDB approximates one
allocation site for every calling context of an object. This
results in BDDBDDB failing to report that the variables a and
b alias in the predicate of the example in Fig. 1. We exploited
this analysis weakness by subjecting the program in Fig. 2 to
BDDBDDB analysis. Two different analysis techniques were
used to analyse this program: one in which only the context
sensitivity aspect of aliasing was tested (referred hereafter as
CS - meaning only Context Sensitivity) and the other one

public class Test {
static Test Testcomm = new Test();
Test(){}
public static void main(String[] args){

Test x = new Test();
Test y = new Test();
Test a = (Test) id(x);
Test b = (Test) id(x);
Test c = (Test) id(y);
Test d = (Test) id1(x);
Test e = (Test) id1(x);
Test f = (Test) id2(x);
Test g = (Test) id2(y);
Test h = (Test) id3(x);
Test i = (Test) id3(x);
Test j = (Test) id3(y);

}
static Object id(Object o){return o;}
static Object id1(Object o){

Test p = new Test();
return p;

}
static Object id2(Object o){

Test p = new Test();
return Testcomm;

}
static Object id3(Object o){

Test p = (Test) id(o);
return p;

}
}

Fig. 2. Test program used for performing CS and CSAS analyses

x y a b c d e f g h i j

x

y

a

b

c

d

e

f

h

i

g

j

T

T

T

T

T

T

T

T

T

T

T

T F T

F

T

F

T F F F F F

F F F F F F

F F F F F F

F F F F F F

F F F F F F

F F F F F F

F F F F F

F F F

F F F

F

F

F

T

T T

T

TT

T T

T

T

T

need an allocation site sensitive analysis

not correctly analysed

Fig. 3. Analysis result obtained using BDDBDDB on program of Fig. 2.

in which both allocation site sensitivity context sensitivity
tests were performed (referred hereafter as CSAS - meaning
Context Sensitivity with Allocation Site sensitivity).

The results are presented in Fig. 3. Each boolean in this
table indicates whether the variables in the corresponding
row and column alias each other or not. The white cells
correspond to correct CS as well as CSAS analyses of aliasing
using BDDBDDB. Red cell (darker shade) (variable d alising
variable e) correspond to correct context sensitive (CS) but
incorrect allocation site sensitive analysis (CSAS). Finally, the
blue cells (lighter shade) correspond to an incorrect CSAS
and CS analyses. This could be because of an extra level of
indirection incurred through methods id3 and id. A rather
interesting observation is that CSAS analysis is true for all
the blue cells and whereas CS analysis is false for the same.
A plausible explanation could be the tool’s inability to clone
contexts past one level of indirection (however this cannot be
corroborated from [11]).

Here, we come to the conclusion that multilevel aliases

which exploit the allocation site sensitivity problem can poten-
tially confuse an adversary armed with even latest tools like
BDDBDDB into giving imprecise results. This is a promising
observation for manufacturing aliased opaque predicates of
[1]. Later [12] observed that determining whether a predicate
is opaquely true or false reduces to solving the “must-alias”
problem. BDDBDDB and other alias analysis tools are useful
for analysing the “may-alias” problem (which is often required
for compiler optimisation) but the alias information provided
by such tools is inconclusive for determining whether a
predicate will be opaquely true at a particular program point.
However, a “may-alias” is sufficient for finding out opaquely
false predicates.

B. Experiments with a static slicer

Even if the static determination of the outcome of opaque
predicates using an alias analyser fails, significant understand-
ing of how the predicate variables are updated can be obtained
if an adversary manages to find out the invariants involved in
maintaining this predicate. This attack can be mounted using
a static slicer which when given a certain slicing criterion (say
the opaque predicate variable) will slice (by marking) relevant
parts of the program that updates the predicate [13]. In this
part of the experiment, we try to determine how such a slicing
attack could be mounted and suggest a possible remedy to
deter it.

We selected the Indus [14] Java slicer to simulate this
attack. Indus was chosen because it uses Soot [9] to derive
points-to results and has reasonable analysis precision [15].
Indus incorporates a program slicing library which facilitates
different high level program analyses such as dependences
on intra- and inter-procedural data, control, interference, and
synchronization of the program. The slicing criterion for Indus
could be a source code line or a Jimple 1 statement.

We used the program fragment of Fig. 4 to simulate a slicing
attack on opaque predicates using Indus. Here, we used a
predicate statement as slicing criteria. A precise slice of all
statements affecting the slicing criteria constitutes a successful
attack. In our example, we inserted an aliased opaque predicate
if(g != h.selectNode(2)) in a fragment from the SciMark
benchmark for LU decomposition, a method for decomposing
a matrix into a product of lower triangular and upper triangular
matrices. A particular method solve has been shown which
performs solving by substitution. We inserted updates to the
dynamic Node data structure in different methods of LU and
inserted predicates in solve. The methods which update the
Node structure has been omitted in the illustration. Indus
slices the statements (shown in highlight) g.addNode(2)
and h.addNode(1) in the method solve. A simple slicing
attack could be mounted with the attacker slicing a program
based on an opaque predicate as the slicing criterion. If the
slice is input invariant 2, the attacker can safely remove the
statements in the slice and replace the predicate with a constant
without compromising the correctness of the program.

1Jimple is an intermediate representation used in the Soot framework
2An input invariant slice does not depend on keyboard input or file read

public static void solve (double LU[][], int pvt[], double b[]) {
int M = LU.length;
int N = LU[0].length;
int ii = 0;

g.addNode(2);

for (int i=0; i<M; i++)
{

int ip = pvt[i];
double sum = b[ip];
b[ip] = b[i];
if (ii==0) {

for (int j=ii; j<i; j++)
sum -= LU[i][j] * b[j];

{ else {
if (sum == 0.0)

ii = i;
}
b[i] = sum;

}

h.addNode(1);

for (int i=N-1; i>=0; i--)
{

double sum = b[i];
for (int j=i+1; j<N; j++)

sum -= LU[i][j] * b[j];
b[i] = sum / LU[i][i];

}

if (g !=h.selectNode(2))

b[1] = b[1] + 1;
}

Fig. 4. Example of a program slice using Indus. The slicing criterion selected
here is the opaque predicate if(g != h.selectNode(2)). Statements in the slice
are labeled with highlight .

Collberg and al. [2] proposed a solution for increasing
the stealth of opaque predicates by merging classes used in
building the obfuscating data structure with the other similar
user-defined class. We argue here that this modification will
still not resist slicing attacks since slicing is done at the
statement level and is not affected by class hierarchy of the
program.

Our solution is illustrated in Fig. 5. Here, the invariant main-
taining code is interwoven with the original program code.
The predicate maintaining data structure code is correlated
with original program data structure by introducing a bogus
conditional, which cannot affect our opaque predicate, such as
if(b[1] > b[2]) h.addnode(1). Using the same slicing criteria
as in Fig. 4, we get a much bigger slice for the program in
Fig. 5. Thus, by introducing such simple correlations, we can
make it difficult for the adversary to blindly strip off the sliced
code from obfuscated program.

III. ANALYSING IDENTIFIER RENAMING OBFUSCATION

Tyma’s patent [4] and his Dotfuscator [19] and DashO [20]
products, for obfuscating Microsoft Intermediate Language
(MSIL) and Java Bytecode respectively, transform identifiers
of multiple methods into an identifier of smaller length. For
unrelated methods, identifier renaming gives an effect of
“overload induction”; resolving the actual methods that are
to be invoked at runtime reduces to the hardness of pointer
aliasing problem. Fig. 6 shows a simple program which has
been obfuscated using Tyma’s identifier renaming algorithm
to one in Fig. 8 (adapted from [18]).

In this part of the experiment, we inspect whether an
attacker armed with a concept lattice visualiser can extract
meaningful information out of the obfuscated code. Concept

public static void solve (double LU[][], int pvt[], double b[]) {
int M = LU.length;

int N = LU[0].length;

int ii = 0;

g.addNode(2);

for (int i=0; i<M; i++)

{
int ip = pvt[i];

double sum = b[ip];

b[ip] = b[i];

if (ii==0) {
for (int j=ii; j<i; j++)

sum -= LU[i][j] * b[j]; {
else {

if (sum == 0.0)

ii = i;

}
b[i] = sum;

}

if (b[1] > b[2])

h.addNode(1);

for (int i=N-1; i>=0; i--)
{

double sum = b[i];
for (int j=i+1; j<N; j++)

sum -= LU[i][j] * b[j];
b[i] = sum / LU[i][i];

}

if (g !=h.selectNode(2))

b[1] = b[1] + 1;
}

Fig. 5. Example of program slice of the same method of the Fig. 4 after
inserting our correlation code if(b[1] > b[2]) h.addnode(1); . The slicing
criteria is same as before. Statements in the slice are labeled with highlight .

public class test1{
private int term1;
private int term2;
private boolean areRelativelyPrime;

public test1(int term1, int term2){
this.term1=term1;
this.term2=term2;
areRelativelyPrime=areRelativelyPrime();

}

public static int gcd(int term1, int term2){
int remainder;
remainder=term1%term2;
if (remainder==0){

return term2;
}
else{

return gcd(term2, remainder);
}

}

private boolean areRelativelyPrime(){
if (gcd(term1, term2)==1){

return true;
}
else{

return false;
}

}

public static void main(String args[]) {
test1 a=new test1(12, 19);

}
}

Fig. 6. A simple gcd calculating test code.

lattices are natural inheritance structures and a natural ap-
plication domain is in the understanding of class hierarchies
for object-oriented languages. Snelting and Tip [16] proposed
the use of concept lattices in software engineering domain
for making refactoring decisions. We tested the hierarchies
of both the programs with the KABA (Klassen Analyse mit
Begriffs Analyse) [17] prototype class refactoring system and

public class a{
private int a;
private int b;
private boolean c;

public a(int a, int b){
this.a=a;
this.b=b;
c=c();

}

public static int b(int a, int b){
int c;
c=a%b;
if (c==0){

return b;
}
else{

return b(b, c);
}

}

private boolean c(){
if (b(a, b)==1){

return true;
}
else{

return false;
}

}

public static void main(String args[]) {
a b=new a(12, 19);

}
}

Fig. 7. Obfuscated code using identifier renaming.

concept lattice visualisation system. In the KABA display
editor, every box represents a class, its name is printed in bold
font in the centre (nodes containing only members from the
same original class C are named C ′n. Members are displayed
above the class name, variables below it. To reduce the screen
space requirements, attributes and objects are not displayed
by default; scroll arrows next to the class name allow the to
expand them if necessary.

Fig. 8 shows the corresponding concept lattice for the
code in Fig. 6. term1 and term2 have been fac-
tored out in test1’1 and areRelativelyPrime in
test1’2. Because of the use of fields term1 and
term2 in test1() and field areRelativelyPrime in
areRelativelyPrime(), both methods have been de-
fined in a lower hierarchical order at test1’3.

Fig. 9 shows the concept lattice for the obfuscated code in
Fig. 7. It has the same hierarchical structure and factors out
variables and methods in the same manner as for code in Fig.
6. KABA’s refactoring algorithm (based on client usage) was
applied to both the concept lattices and their similar simplified
lattice structures are shown in Fig. 10 and 11 respectively.

Our simple attack with KABA was not completely suc-
cessful at deobfuscating our sample obfuscation using Tyma’s
patented method. If we consider the relaxed goal of ob-
fuscation, i.e. the objective is to make the obfuscated code
unintelligible, then we can say that Tyma’s method fails in
this instance, as the obfuscated code reveals the same amount
of information as its unobfuscated counterpart when analysed
using the same static analysis tool. That is, if the code of
Fig. 6 can be attacked by adversaries, then its obfuscated
counterpart would have a similar vulnerability. The obfuscated
code might “look” obscure because of overusing identifiers
but it is equally analysable as the unobfuscated code. We
note that the built-in alias analysis engine of KABA was able

Fig. 8. Concept lattice for program in Fig. 6

Fig. 9. Concept lattice for obfuscated code in Fig. 7

analyse small problem instances like that of Fig. 6 and 7.
However, we have not tested whether KABA will be able to
scale for large programs and hence we cannot conclude that
Tyma’s obfuscation technique cannot deliver satisfactory levels
of obfuscation in some instances.

IV. CONCLUSION

Since Barak highlighted the need for provable security for
obfuscation [21], we have witnessed a spate of obfuscation
techniques based on the hard complexity problem of precisely
determining alias locations at runtime [18], [3], [4], [6], [7],
[5]. However, no method of generating hard problem instances
is currently known, except for numeric problems such as
integer factorization. No method is known for reducing the
integer factorization problem to de-obfuscation.

In this paper, we have highlighted some plausible attack
techniques that could be mounted on obfuscation transforms
which rely on the intractability of aliasing problem as the-
oretical basis. At the start of this paper, we had posed two
interesting research questions, viz. What sort of analysis
tools are useful for the automated understanding of the code
obfuscated with aliasing transforms? and Can general purpose
program analysis tools be used to assess the obfuscatory
strength of aliasing transforms or do we need to develop
customised analysis tools instead? Throughout the paper, we

tried to address these two questions with a selection of three
static analysis tools (BDDBDDB, Indus, and KABA) and the
analysis results they produced on test programs. We outlined a
few simple techniques (like making references allocation site
sensitive to thwart BDDBDDB and correlating predicates to
make bigger slices) that exploit weaknesses in most advanced
program analysis tools to strengthen the stealth of obfuscating
transforms.

Another novel contribution of this paper is the suggestion
that a relatively new analysis technique, called concept lattices,
could be used in frontend tools for attacking popular obfus-
cations such as identifier renaming, overload induction, class
coalescing and splitting. We have illustrated the use of concept
lattices by analysing a simple instance of Tyma’s identifier
renaming obfuscation algorithm. In our future work we will
construct more complicated instances of method overloading
to see whether concept lattices can successfully deobfuscate
these. We also hope to test the obfuscatory strength of
Sosonkin’s DOJ transforms [22].

REFERENCES

[1] Collberg, C., Thomborson, C., and Low, D.: A Taxonomy of Obfuscating
Transformations. Technical Report#148. July 1997. 36pp. Department of
Computer Science, The University of Auckland, New Zealand.

Fig. 10. Concept lattice of program in Fig. 6 after refactoring

Fig. 11. Concept lattice of the obfuscated program in Fig. 7 after refactoring

[2] Collberg, C., Thomborson, C., and Low, D.: Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs. In Proceedings of 1998
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’98). Pages 184-196. Jan 1998.

[3] Wang, C., Hill, J., Knight, J.C., and Davidson, J.W.: Protection of
software-based survivability mechanisms. In Proceedings of the 2001
conference on Dependable Systems and Networks. Pages 193-202. IEEE
Computer Society. 2001.

[4] Tyma, P.: Method for renaming identifiers of a computer program. US
patent number 6102966. August 2000.

[5] Sosonkin, M., Naumovich, G., and Memon, N.: Obfuscation of Design
Intent in Object-Oriented Applications. In Proceedings of the 2003 ACM
Digital Rights Management Conference. Pages 142-153. Washington,
DC, USA.

[6] Sakabe, Y., Masakazu, S., and Miyaji, A.: Java obfuscation with a
theoretical basis for building secure mobile agents. In Lioy A. and
Mazzocchi D. eds. Communications and Multimedia Security (CMS
2003). Volume 2828 of Lecture Notes in Computer Science. Pages 89-
103. Springer-Verlag. 2003.

[7] Ogiso, T., Sakabe, Y., Soshi, M., and Miyaji, A.: Software obfuscation
on a theoretical basis and its implementation. In IEICE Transactions on
Fundamentals, Pages 176-186. 2003.

[8] Lhotak, O. and Hendren, L.: Scaling Java Points-To Analysis using
SPARK. Sable Technical Report No. 2002-9. School of Computer
Science, McGill University, Canada.

[9] Vallee-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominvolle, P., and
Sundaresan, V.: Optimizing Java bytecode using the Soot framework: It
it feasible?. In Proceedings of Compiler Construction (CC 2000). Pages
18-34. Volume 1781 of Lecture Notes in Computer Science. Springer-
Verlag. 2000.

[10] Soot: Version 2.2.2. March 2005. http://sable.mcgill.ca/soot/
[11] Whaley, J. and Lam, M. S.: Cloning-based context-sensitive pointer

alias analysis using binary decision diagrams. In Proceedings of the
ACM-SIGPLAN 2004 conference on Programming Language Design
and Implementation (PLDI’04). Pages 131-144. Washington DC, USA.
2004.

[12] Nagra, J.: Thread Based Software Watermarks. PhD Thesis. Department
of Computer Science, The University of Auckland, New Zealand. 2006.

[13] Tip, F.: A survey of program slicing techniques. In Journal of Program-
ming Languages, 3(3):121-189. September 1995.

[14] Indus-0.5. March 2005. http://indus.projects.cis.ksu.edu
[15] Ganeshan Jayaraman, J. H. and Ranganath, V. P.: Kaveri: Delivering

Indus Java program slicer to Eclipse. In Proceedings of Fundamental
Approaches to Software Engineering (FASE’05) conference. pages 269-
272. Volume 3442 of Lecture Notes in Computer Science. Springer-
Verlag. Edinburgh, Scotland. 2005.

[16] Snelting, G. and Tip, F.: Understanding class hierarchies using concept
analysis. In ACM Transactions on Programming Languages and Systems
(TOPLAS). Pages 540-582. May 2000.

[17] Streckenbach, M. and Snelting, G.: Refactoring Class Hierarchies with
KABA. In Proceedings of ACM conference on Object Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA’04). Pages
315-330. Vancouver, BC, Canada. 2004.

[18] Cimato, S., De Santis, A. and Ferraro Petrillo, U.: Overcoming the
obfuscation of Java programs by identifier renaming. In Journal of
Systems and Software, Volume 78, Issue 1, October 2005, Pages 60-
72.

[19] Dotfuscator Whitepaper Version 2.0. 14pp: Accessed PreEmptive Solu-
tions. September 2005.
www.preemptive.com/documentation/dotfuscator whitepaper.pdf

[20] DashO Whitepaper Version 1.0. 13pp: PreEmptive Solutions. Accessed
September 2005.
www.preemptive.com/documentation/dasho whitepaper.pdf

[21] Barak, B.: Can we obfuscate programs? Accessed September 2005.
http://www.cs.princeton.edu/ boaz/Papers/obf informal.html

[22] Naumovich.G., Yalcin, E., Memon, N., Yu, H., and Sosonkin, M.:
Class coalescence for obfuscation of object-oriented software US patent
number 20040103404A1. May 2004.

An extended version of this work is available with the
authors and may be obtained by contacting the first author
at anirban@cs.auckland.ac.nz

