
Computer Science 330 Intro 24/1/07 Page 1 of 11

Computer Science 330 Language Implementation
Lecture Times Tue 8, Wed 8, Fri 9, PLT2.

Tutorial Time Wed 9, GTL (Ground Floor Tutorial Laboratory).
Tutorials start in week 2.

Lecturer
Bruce Hutton Room 587 Ph 3737599 Ext 88299
I am responsible for teaching the whole course.
There will be three lectures and one tutorial per week. The tutorial is intended for going over
examples, assignments, etc. Tutorials are run in an interactive fashion.

Prerequisites
CompSci 210 and CompSci 230 are the required prerequisites. A good knowledge of data
structures and recursion is essential. Some knowledge of UNIX, such as that obtained from
Compsci 215 is also desirable.
You will need to be very comfortable with object oriented programming, and the notion of
extending classes and overriding method declarations. You will also need to be very comfortable
with data structures, such as trees, linked lists, hashing, etc. Familiarity with recursion is essential.
You need to be comfortable with “programming in the large” – dealing with large programs written
by others, where you make small changes, without necessarily understanding all the source code
provided.
You need some familiarity with a command language, such as the shell language provided by
UNIX, LINUX, or Cygwin.
You will need some familiarity with regular expressions, used for pattern matching in grep and
most program editors.
In the latter part of the course, you need to be familiar with computer architecture, and assembly
language programming. You will have to generate Alpha assembly language, suitable for my
Alpha simulator. If you have not taken CompSci 210 recently, obtain a copy of the lecture notes
from the CompSci 210 second semester web page, and read them.

Reasons for taking Computer Science 330
Computer languages provide the main way in which computer programmers tell the computer what
tasks to perform. Having an understanding how computer languages are specified, what they mean,
and how they are implemented, is fundamental to computer science.
As a programmer, you spend a lot of time interacting with compilers. Understanding how a
compiler works means you have a much better understanding of what the compiler error messages
mean. You can debug your programs more rapidly.
Having an accurate model for the compile time and run time data structures gives you a much better
understanding of the computer language you use to write your programs. Your understanding of
such topics as scope, mapping of identifiers to declarations, recursion, extending classes, overriding
and overloading of methods, etc, becomes much clearer, with a corresponding increase in
productivity.

Computer Science 330 Intro 24/1/07 Page 2 of 11

Many programs involve the processing of input, and building of data structures to represent the
input. For example, a spreadsheet program has to lexically analyse and parse the input in each cell.
Simple programs are often generated by software, rather than people. The output from one program
might need to be processed by another program. For example, a user might respond to an HTML
web page, and generate a request that gets converted into an SQL query, and the reply from this
might need to be converted back into HTML. Similarly, many programs involve the reformatting
of text. The tools used by compiler writers to implement lexical analysis and parsing can also be
used in the development of such programs. Knowing how to use these tools can have an enormous
effect on your productivity - perhaps the lexical analysis/parsing portion of a program can be
developed in 10% of the time it would take without the use of these tools. I often use JFlex and
CUP to extract or reformat data from text files, that have nothing to do with computer languages.
The generation of programs by treewalking data structures also has a lot in common with the
generation of code by a compiler.
If you intend to be a programmer, you find most of your time is spent making small changes to
large programs written by others. You have to make the changes in a manner that is consistent with
the existing program. You have to design and build sophisticated data structures, and perform
recursive treewalks of the data structures, to analyse and collect information. You have to create
symbol tables, and search for information based on various keys and environments. All of these
tasks are performed when writing compilers. The assignments in this course give you good practice
in these tasks. The material in this course thus has direct practical application.

Student Representative
A student representative needs to be selected by the class.

Lecture Content
The material covered includes:
• Lexical Analysis, using JFlex. It is possible to specify the lexical analyser by writing regular

expressions corresponding to the different kinds of tokens that occur in the language, and
actions to perform when the regular expression is matched. The regular expressions
corresponding to reserved words and special symbols are trivial to write because they are
nothing but the text for the symbol. Only the regular expressions for identifiers and constants
have any complexity. For example, an identifier could be described by the pattern “[A-Za-
z][A-Za-z0-9]*”.

• Context free grammars, and LALR(1) parsing, using Java CUP. It is possible to specify
the grammar of a computer language using a context free grammar. Essentially we write
grammar rules corresponding to each construct that can occur in the language, and actions to
perform when the rules are matched. For example, a while statement could be defined by the
rule “Stmt → WHILE LEFT Expr RIGHT Stmt”. The grammar rules can be used to generate
tables that drive the parser. The parser invokes the lexical analyser whenever it needs a token,
and generates an abstract syntax tree, that represents the structure of the program being
compiled. The ability to understand a grammar description of a computer language is
extremely useful, as is the ability to design your own grammar for a simple language.

• Building of the abstract syntax tree, and tree-walking. The front portion of the compiler
(the lexical analyser and parser) generates an abstract syntax tree. The back portion of the
compiler performs multiple recursive treewalks of the abstract syntax tree, collecting
information about the program, storing it in various tables, and annotating the tree with
information, such as the environment in which to determine the meaning of identifiers in a
construct, the declaration corresponding to each identifier application, the type of an
expression, etc. These treewalks also perform type checking, generate code, etc.

Computer Science 330 Intro 24/1/07 Page 3 of 11

• Symbol table management. One of the main data structures created when analysing a
program is the symbol table (although I call this the compile-time environment). This
contains information about each declaration that occurs in the program (e.g., type,
environment, run time offset, etc). Because modern computer languages have complicated
scope rules, symbol tables have a complex structure, and complex search algorithms. For
example, in Java, an identifier can refer to a declaration in the local block, an enclosing block,
or any class that extends the current class. Moreover, local declarations take precedence over
more global ones. Thus we first search the local block, then the enclosing and extended
environments. Languages such as Java also have to cope with overloading of identifiers -
where there are multiple declarations in the same block with the same identifier.

• Interpretation and code generation. After lexical analysis, parsing, and the analysis phases
of the compilation, we perform a final recursive treewalk, and either interpret the tree, or
generate code that we then assemble and run separately. While not many programmers write
compilers that generate code, it is fairly common to write simple interpreters. For example, if
the user can type an expression into a text field, then the program may have to parse the
expression, and evaluate it by a recursive treewalk. Recursion is a very powerful tool when
writing compilers and interpreters.

• Run time representation of data, for object oriented languages. To implement a computer
language, we need a well-defined model for how the data is stored at run time. For example,
an object is typically composed of a pointer to an instance field table, and the first entry of
this table is a pointer to an instance method table for the object. The fields and methods for
superclasses occur in the tables before the fields and methods for subclasses, so by ignoring
some information, an object belonging to a subclass appears to have the same structure as an
object belonging to its superclass. We can implement overriding of methods by accessing
methods indirectly through the method table, and making the method table depend on the
actual type of the value, rather than the declared type of the variable. We can implement
recursion by using a stack to allocate space for each invocation that has been invoked but not
returned from.

Generally I will take a practical approach, rather than dealing much with the theory of lexical
analysis and parsing. For example, I will not explain how regular expressions are used to build a
finite state automaton, nor how the LALR(1) states are derived. In previous years, I have included
material on top down parsing. I have deleted this material, because top down parsing normally
requires the grammar to be modified, which introduces students to “bad habits” that cause problems
when they attempt to design grammars. I have put more material in on grammar design (which of
course makes it even more important to do the assignments).
The last part of the course will deal with the implementation of object-oriented languages. It will
give you a clear model of how objects are represented at run time, how classes can be extended, and
how the overriding of methods is implemented.
Note that I have changed my representation of objects from two year’s ago. Before, I represented
an object by the address of a pair of (field table, method table) pointers. I now represent an object
by the address of the field table. A pointer to the method table occurs at the beginning of field
table. I have also changed the implementation of the getClass() method.

Hardware and Software
Apart from drawing of diagrams using Visio and generating tables using a spreadsheet, for
assignment 1 it should be possible to do the assignments on most platforms: Windows,
UNIX/LINUX, Mac (OS X).
You will need a modern version of Java, JFlex, CUP, and the Alpha simulator. Java should be at
least jdk1.5. JFlex and CUP should be the ones provided from the computer science 330 web page

Computer Science 330 Intro 24/1/07 Page 4 of 11

(I have altered them to fix some bugs and provide better debugging facilities). The Alpha simulator
should be at least version 10.007. It is a good idea to get something that corresponds to
UNIX/LINUX/Cygwin, with the bash command interpreter.
Apparently “Glimmer”, available from “http://glimmer.sourceforge.net/” is a good programming
editor for LINUX.

Setting up Cygwin or LINUX on your home machine
See the notes “GNU for Windows (Cygwin)” available from “References” on the department web
page, and “Cygwin Installation Guide” available from “Support” on the department web page, to
see how to install Cygwin.

Setting up Java, JFlex, and CUP on your Home Machine
A description of how to obtain and set up Java on your home machine is available from “How to
install JDK on a PC” within the “technical support” web page of the Computer Science Department.
You can obtain files to set up your home directory from the 330 resources web page. One of the
setup files is a directory LIB330, containing the files JFlex.jar, java_cup.jar and
java_cup_runtime.jar, These files represent the source code for JFlex and CUP. The provided
.bash_profile file defines a shell variable $LIB330 that refers to this directory, and is used by shell
scripts for running JFlex and CUP.

Internet Access to our UNIX Machine
See the user note “Connecting from home via SSH”, available from “Support” on the department
web page, to see how to connect to our UNIX machines.
You might find that to copy whole directories between machines, it is best to tar and gzip them,
copy them, then gunzip and untar them. To tar a directory, type

tar –c -z -f dirName.tar.gz dirName

This will create a tar/gzip file called dirName.tar.gz.
To look at the contents of a tar file, type

tar -t –z -f dirName.tar.gz

To gunzip/untar files, type
tar -x –z -f dirName.tar.gz

This will recreate the directory previously tarred.
Note that some versions of tar do not support the –z option, and silently ignore it. If this is the case,
explicitly perform the gzipping yourself.

Gaining a Pass
Actually, almost everyone who persists with the course, and makes a real attempt at the assignments
passes. But if you don’t really do the assignments, do not expect to pass.
This course is officially recognized as a practical course by the Science Faculty. This means that to
pass the course you have to pass two sections separately as well as getting an overall pass mark.
You must get a pass in the practical component, namely the assignments. You must also get a pass
in the theoretical component, namely the combined mark coming from the test and final
examination.
The mark required to pass the practical and theoretical component individually are usually about 5
marks below the requirement to pass overall (e.g., 40% for a practical and theory pass, and 50% for
a pass overall).

Computer Science 330 Intro 24/1/07 Page 5 of 11

There are two reasons why we have this requirement to pass both components. Both are to do with
motivating students to actually do the assignments.
The first reason is to motivate lazy but bright students. Some bright students believe that they can
have an easy time throughout the semester, and then study hard in the last few weeks. They will
find that this does not work in computer programming. If you have not done the work, you will fail
the final examination.
The second reason is to motivate dishonest students to be honest. Some students think that if they
can cheat in assignments, they can gain enough marks in assignments to compensate for a poor
examination mark. In fact students who cheat in assignments rarely gain more than about 30% in
the examination, and tend to fail not only the examination, but also overall.
In reality, almost all students who pass the theory component also pass the practical. Students who
fail the practical do not know enough to pass the theory. At the lower levels we get lots of students
who pass the practical but fail the theory. However, at the stage 3 level, most students who stay
around until the end of the course pass.
The requirement for students to pass both parts of the course is for the student’s benefit. We
actually increase our pass rate by requiring students to pass both components of the course, because
this motivates students to make a real attempt at the assignments.

Assignments
All programming assignments will involve the use of Java. I will use JFlex, a special purpose
language for writing lexical analysers, and CUP, a special purpose language for writing parsers
(Java equivalents of lex/flex, and yacc/bison). Both of these languages involve writing “rules”
indicating the input to match, with “actions” indicating the action to perform when the match
occurs. The actions and support code are essentially written in Java, and the JFlex and CUP
compilers compile JFlex and CUP programs to generate Java programs, that then have to be
compiled using the Java compiler. Familiarity with regular expressions for pattern matching (used
in most text editors and the UNIX grep command) will help you with JFlex.
All source code for JFlex, CUP, programming assignments, and sample programs, is available over
the web. I have modified CUP a bit to fix a couple of bugs related to error recovery, and greatly
improve the diagnostic messages, when performing a debugging parse, outputting tables, etc. Thus
it is important that you use the source code provided in the 330 web pages, and not obtain the
source code from the web site for the recommended reading book.
 You need some familiarity with UNIX, although the level of expertise required is not very great.
The assignment template is set up in its own directory, and all you have to do is copy the whole
directory to your own directory. There are shell scripts with names such as run.bash,
createlexer.bash, createparser.bash, createclass.bash, etc, for running Java, JFlex, CUP, and javac so
there is very little you need to know to run everything. Please make sure you keep your files with a
sensible directory structure, and please back up files. Students who fail to manage this, usually
waste days of time, and lose files and sometimes marks.
JFlex and CUP tend to prefer text files to be in UNIX format, with linefeeds, rather than CR or
CR/LF.
There are two assignments.
• Assignment 1 will be half “theoretical” - performing a bottom up parse, building a tree, etc.

This is very easy. The other half will be “practical” - implementing the parser and simple
code generator for a language.

• Assignment 2 will be “practical” - implementing the parser and interpreter for a language.

Computer Science 330 Intro 24/1/07 Page 6 of 11

Assignment Submission
All assignment submission is electronic. Submission should be via the assignment drop box. To
find out how to make a submission, go to the Computer Science Department home page at
http://www.cs.auckland.ac.nz, select “Personal Portal”, and look for the “Web Drop Box” link.
Remember that no computer or network is entirely reliable, and people are even less reliable. To
ensure that you are able to successfully submit your assignment:
• Make sure you get an electronic receipt when making an electronic submission. This is a file

with a special code number that we are able to decrypt, to verify your submission. Failure to
get this means that you were not successful in your submission. Moreover, make sure that it
has your name on it, not somebody else’s. Make sure all the files you intended to submit are
listed. In previous years, some students got a receipt that listed no files as submitted (because
one of the programming staff set up the assignment drop box to allow 0 files to be submitted).

• Make sure you have connected via NetAccount, as yourself. Otherwise you will submit your
assignment as another person. Make sure you submission contains your full name, login
name, student ID, etc. Just in case you happened to be connected via NetAccount as the
wrong person.

• Make sure your submission compiles/assembles and runs just before you submit. You will
get no marks for a submission that fails to compile/assemble. Don’t make a few cosmetic
changes (such as adding comments) at the end, without checking that everything still
compiles/assembles and runs. Don’t transfer files as in-line text through email. Lines get
wrapped around, and the program no longer compiles.

• Make sure you really are trying to submit the correct files. Look at the files before you
submit. Don’t assume that just because it has the right name, that it is the right file. If the file
submitted is a gzipped tar file, copy it to another directory, and untar/gzip it, to make sure that
you really did tar/gzip it correctly. If a shell script is provided to tar/gzip your assignment
into a single gzipped tar file, use it. You are less likely to make a mistake. It is not unusual
for some students to create a gzipped tar file with nothing in it.

• Don’t do silly things like renaming a Microsoft Word file as Assign1.txt, or a zip file as
Assign2.tar.gz, so that you have a file name that is accepted by the assignment drop box. If I
asked for a gzipped tar file, I want a gzipped tar file! Don’t expect me to spend an hour trying
various applications to unpack your assignment submission.

• If you fail to submit on the first attempt, wait a while and try submitting again. The system
gets overloaded when assignments are due, and a simple retry is often sufficient. When the
system really does go down, it is usually only for a short time.

• You might find that there are problems submitting assignments from home, due to their size.
One student had problems in a previous year because their text files were padded with
megabytes of nulls. Another student had multiple copies of their assignment nested inside the
other, because they didn’t know how to drag a file from one window to another. Many
students submitted gzipped tar files that included all the class files as well. Assignments that
should have been less than 60KBytes were puffed up to 10MBytes for various reasons. If you
have problems, submit the assignment from within the laboratory. Don’t keep overloading
the system by trying to submit 10Mbyte files from home. You will stop other students
submitting their assignment.

• You might find it is not possible to submit assignments from home if you connect via ADSL.
Apparently NetAccount times out after half a minute, if you use ADSL. I wish they would fix
this!

Computer Science 330 Intro 24/1/07 Page 7 of 11

• It is possible to submit your electronic copy more than once - the last version will be the one
marked. Make a submission each time your assignment gets to a reasonable stage. That way,
it will not matter if your last submission is unsuccessful, or you lose all you files. You are
strongly advised to do this. It also leaves an audit trail, in the event of someone copying your
assignment.

• Contact the Computer Science Department programming staff, in the event of a system
failure. In most cases, academic staff are not the most appropriate people to fix the problem.
You should nevertheless make sure that we are aware of any problems that are occurring.

• Do not send email copies of assignments to staff, or expect us to mark hard copy. Email
submissions are frequently lost or garbled. We have no easy way of making a submission for
you, and hence no way of reliably getting your assignment to the markers. All students
submit files with the same name, and we have no way of telling whose assignment is whose.
I now automatically delete all email classified as junk mail. So, potentially email from
obscure mail servers will never be received by me. Also, I cannot verify who the sender is.

• Email submissions will not be marked. The whole point of keeping the assignment drop box
open after the due date is to cope with the system going down. You should continue trying to
submit, by the standard means. I am not willing to spend hours disentangling assignments
emailed to me by students who have made no real attempt to submit the assignment properly.
An adjustment will be made to the penalties of all students, in accordance with the down time.

You should assume that the system will go down for short periods of time. No adjustment to your
marks or due date will be made for down times of a short duration or down times that are not very
close to the due date. Only in the event of major down times close to the due date, will an
adjustment be made.

Medicals, etc
In the event of illness, you need to provide a medical certificate from student health, with sufficient
information for the supervisor of the course to make a judgement on the severity of the illness. The
original certificate must be provided (photocopies are not accepted), and it must be signed by a
doctor, not a nurse.
• Note that not all medicals are accepted. For example, I refused two medicals in compsci 210

a couple of year’s ago.
• No extensions will be given for assignments beyond the penalty date, since solutions will be

provided on the web.
• If you do not submit an assignment, due to illness, your mark will usually be estimated from

later assignments of at least the same level of difficulty. If you attempt insufficient
assignments for your mark to be estimated, you will fail. (Besides, students who miss several
assignments also fail the theory section.)

• If you do not sit a test or the final examination, your mark will be estimated from your rank in
the other theory portion of the assessment. If you sit neither, you will fail.

• Marks obtained by requesting a remark of a test will be ignored in the case where the test is
used to estimate the mark for the final examination.

• Sitting the test, then gaining special consideration due to illness is unlikely to have any real
effect. Experience shows that minor illnesses such as colds have little effect on examination
marks. Even a difference in 10% in your test mark would scale down to 2%, when combined
with your other results, which is unlikely to have much effect on your final grade.

Computer Science 330 Intro 24/1/07 Page 8 of 11

• If you failed the test, or barely passed the test, there is no point in applying for an aegrotat for
the final examination. Your estimated grade will be based on your test mark, and you have to
get a clear pass in the test (around a B-) before you will be considered for an aegrotat.

• Requests for a recount for your final examination only involve adding up the marks again, and
checking that the grade has been computed correctly. They do not involve remarking. You
can perform your own check for free by obtaining a photocopy of your examination.

• If you are unable to do an assignment due to illness, or are granted an extension, still
make sure that you make a dummy submission, before the assignment drop box closes.
Most assignments allow for some kind of documentation files. Put some text in the
documentation file to indicate the situation. This makes administration much easier. A mark
sheet, and submission log entry, and directory for placing your submission are automatically
created for you, and I can edit this at a later date.

Bonus and Penalty Marks
The official due date for all assignments will be 12 noon on a Wednesday. However, a continuous
scale of bonus and penalty marks means that your mark degrades gradually down to 35% at 5pm on
Thursday. Thus there is only a slight penalty if you miss out on submission by a few minutes.
If you submit your assignment early, you will gain a bonus mark of 0.4% of the earned mark for
each “laboratory hour” early, with a maximum bonus of 6.4%. If you submit your assignment late,
but before 5pm on Thursday of that week, you will be penalised by 5% of the earned mark for each
“laboratory hour” late. A “laboratory hour” is defined as an hour between 9a.m. and 5p.m. For
example
Time Multiplication factor
Monday 9am 106.4%
Monday 12 noon 106.4%
Monday 5pm 104.4%
Tuesday 9am 104.4%
Tuesday 12 noon 103.2%
Tuesday 5pm 101.2%
Wednesday 9am 101.2%
Wednesday 10am 100.8%
Wednesday 11am 100.4%
Wednesday 12 noon 100.0%
Wednesday 1pm 95.0%
Wednesday 2pm 90.0%
Wednesday 3pm 85.0%
Wednesday 4pm 80.0%
Wednesday 5pm 75.0%
Thursday 9am 75.0%
Thursday 10am 70.0%
Thursday 11am 65.0%
Thursday 12 noon 60.0%
Thursday 1pm 55.0%
Thursday 2pm 50.0%
Thursday 3pm 45.0%
Thursday 4pm 40.0%
Thursday 5pm 35.0%
Thursday 5:01pm Can Not Submit

Computer Science 330 Intro 24/1/07 Page 9 of 11

Bonus/Penalty Marks

0.0

20.0

40.0

60.0

80.0

100.0

120.0

M
o

n
 0

M
o

n
 2

M
o

n
 4

M
o

n
 6

M
o

n
 8

M
o

n
 1

0

M
o

n
 1

2

M
o

n
 1

4

M
o

n
 1

6

M
o

n
 1

8

M
o

n
 2

0

M
o

n
 2

2

T
u

e
 0

T
u

e
 2

T
u

e
 4

T
u

e
 6

T
u

e
 8

T
u

e
 1

0

T
u

e
 1

2

T
u

e
 1

4

T
u

e
 1

6

T
u

e
 1

8

T
u

e
 2

0

T
u

e
 2

2

W
e
d

 0

W
e
d

 2

W
e
d

 4

W
e
d

 6

W
e
d

 8

W
e
d

 1
0

W
e
d

 1
2

W
e
d

 1
4

W
e
d

 1
6

W
e
d

 1
8

W
e
d

 2
0

W
e
d

 2
2

T
h

u
r

0

T
h

u
r

2

T
h

u
r

4

T
h

u
r

6

T
h

u
r

8

T
h

u
r

1
0

T
h

u
r

1
2

T
h

u
r

1
4

T
h

u
r

1
6

T
h

u
r

1
8

T
h

u
r

2
0

T
h

u
r

2
2

Time

S
ca

le
 F

a
ct

o
r

Assignment Dates
See the calendar at the end of this document.

All Assignments must Compile/Assemble/Run
You will gain no marks for assignments that do not compile/assemble.
If you develop your program in stages, make sure that later changes do not cause previously tested
inputs to stop working.

Copying of Assignments
We will run a program to detect copying of assignments. This program is very successful in
picking up copied assignments. Both the person doing the copying and the person permitting the
copying will lose all marks for the assignment, even if only a portion of the assignment is copied.
Note that this also applies to identical twins, married couples, people in relationships, friends, and
people just “working together”. Also be aware that people selling assignments usually sell them to
about 10 people, and all such students lose marks. Even if you are never picked up for copying, the
best way to guarantee you fail is to not do assignments. It should be pointed out that students
picked up twice in connection with copying end up failing the practical component, and hence
failing, the whole course. This applies even to “A” grade students who permit other students to
copy their assignments.
For our policy regarding cheating in assignments see
 http://www.cs.auckland.ac.nz/CheatingPolicy.html.

Linefeeds and Carriage Returns
A shell script convertFile.bash will be provided in the ~/bin directory to convert standard input text
to UNIX, Mac, and PC format. Shell scripts toUNIX.bash, toMac.bash, toPC.bash, taking a list of
files, will convert the individual files.

Test and Examination
You will find that it is absolutely essential that you do the assignments. Otherwise, you will not
pass.
There is a one and a half hour test and a two hour final examination.

Computer Science 330 Intro 24/1/07 Page 10 of 11

Test Date
See the calendar at the end of this document.

Mark Breakdown (Subject to Change)
Assignment 1 7.0%
Assignment 2 13.0%
Test 20.0%
 Examination 60.0%
Total 100.0%

Bruce Hutton

Computer Science 330 Intro 24/1/07 Page 11 of 11

Dates
Week Sun Mon Tue Wed Thu Fri Sat

1 25-Feb 26-Feb 27-Feb 28-Feb 01-Mar 02-Mar 03-Mar

2 04-Mar 05-Mar 06-Mar 07-Mar 08-Mar 09-Mar 10-Mar

3 11-Mar 12-Mar 13-Mar 14-Mar 15-Mar 16-Mar 17-Mar

4 18-Mar 19-Mar 20-Mar 21-Mar 22-Mar 23-Mar 24-Mar

5 25-Mar 26-Mar 27-Mar 28-Mar 29-Mar 30-Mar 31-Mar
Assgn 1 12 noon
Wed

 Assgn 1 28-Mar-06

6 01-Apr 02-Apr 03-Apr 04-Apr 05-Apr 06-Apr 07-Apr
Test 6:30pm-8pm
Thu

 Test Easter 05-Apr-06

 08-Apr 09-Apr 10-Apr 11-Apr 12-Apr 13-Apr 14-Apr
Mid Semester
Break

 Easter

 15-Apr 16-Apr 17-Apr 18-Apr 19-Apr 20-Apr 21-Apr
Mid Semester
Break

7 22-Apr 23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr

 ANZAC

8 29-Apr 30-Apr 01-May 02-May 03-May 04-May 05-May

9 06-May 07-May 08-May 09-May 10-May 11-May 12-May

10 13-May 14-May 15-May 16-May 17-May 18-May 19-May
Assgn 2 12 noon
Wed

 Assgn 2 16-May-06

11 20-May 21-May 22-May 23-May 24-May 25-May 26-May

12 27-May 28-May 29-May 30-May 31-May 01-Jun 02-Jun

 03-Jun 04-Jun 05-Jun 06-Jun 07-Jun 08-Jun 09-Jun Examinations

 Queen

 10-Jun 11-Jun 12-Jun 13-Jun 14-Jun 15-Jun 16-Jun

 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun 22-Jun 23-Jun

 24-Jun 25-Jun 26-Jun 27-Jun 28-Jun 29-Jun 30-Jun

Week Sun Mon Tue Wed Thu Fri Sat

