
14/04/2012

1

Model/View Applications in
Swing

Some slides are based on Dr Ian Warren’s slides

1

• Many applications provide multiple views of the
same set of data.

• All the views should be derived from the same
set of data.
– The change to the data should be reflected by all

the views.
• The data that are used to derived the views are

called the data model.
• The presentation of the data is called the view.

2

JTable component
instance

Model Stats view

Change request
Update notification

3

Model/view GUIs with Swing
• Contemporary GUI frameworks, like Swing, are based on a

separable model architecture
• In Swing all components (JComponents) have separate

models to represent the data to be shown by the
components

4

JTable << interface >>
TableModel

JList << interface >>
ListModel

4

14/04/2012

2

• The data model provides an interface for
the Swing component to retrieve/update
the data in the data model

• The data model’s interface also allows the
views to register their interest with the
model to allow the views to be notified of
the changes to the data model

JTable component
instance

TableModel
instance

setValueAt(row, col)

tableChanged(event)

getValueAt(row, col)

5

Implementing TableModel

• TableModel is an interface defined in
Java.

• AbstractTableModel provides a partial
implementation of the TableModel
interface.

• In your implementation, you should
implement your own data model by
extending the AbstractTableModel

public class MyTableModel extends AbstractTableModel
6

Storing data in the model
• In MyTableModel, you should define data

structures for holding the data to be presented
by the JTable view

• In the code below, records holds the data;
colNames stores the names of the columns to
be shown in the table.
– It’s natural to use a two dimensional array to hold

the values in a table. But, you can use other type of
structure as well.

String[][] records;
String[] colNames;

public MyTableModel(String[][] records, String[] colNames) {
this.records = records;
this.colNames = colNames;

}
7

• AbstractTableModel defined some
methods
– Through these methods, the view can interact

with the model
• getColumnCount

– Returns the number of columns in the model.
– A JTable uses this method to determine how

many columns it should create and display by
default.

@Override
public int getColumnCount() {

return colNames.length;
}

8

14/04/2012

3

• getRowCount
– Returns the number of rows in the model.
– A JTable uses this method to determine

how many rows it should display.

@Override
public int getRowCount() {

// assume there are 20 rows
return 20;

}

9

• getValueAt(int rowIndex, int columnIndex)
– Returns the value for the cell at columnIndex

and rowIndex.
– It is called by the runtime to retrieve value to

fill the table

@Override
public Object getValueAt(int row, int col) {

return records[row][col];
}

10

• setValueAt(Object aValue, int
rowIndex, int columnIndex)
– This method sets the value of the cell at

the specified row and column
– If you allow the data to be modified

through the table (i.e. by editing a cell in
the table), the runtime calls this method
after user modifies a cell’s value

@Override
public void setValueAt(Object value, int row, int col) {

records[row][col] = (String)value;
…

}

11

• getColumnName(int column)
– If you want to display names for the

columns in the table, you should override
this method.

– Otherwise, the column names would be A, B,
C, ... Z, AA, AB, etc (i.e. the default name
for a spread sheet)

– This method is called by the runtime when
the table is shown.

@Override
public String getColumnName(int column) {

return colNames[column];
}

12

14/04/2012

4

• isCellEditable(int rowIndex, int
columnIndex)
– This method returns a Boolean value
– True means the cell at the given row and

column can be modified. Otherwise, the cell
cannot be modified.

– The runtime calls this method to determine
whether a cell in the table can be modified.

@Override
public boolean isCellEditable(int row, int col) {

if (col == 1) // only the second column can be modified
return true;

else
return false;

} 13

• In an application, multiple parties might be
interested in knowing the changes to the data
model.
– These parties would register as listeners of the data

model.
– When the data model changes, the listeners need to be

notified.
• Writing code to notify the changes to the listeners

is tedious.
• The AbstractTableModel implements a set of

fireXXX methods.
– You should use these methods in your program.

• These methods are used to notify the listeners who
want to know the data in the data model have been
changed.
– As a result of the notification, the listeners will modify

their presentation of data.

14

• fireTableCellUpdated(int row, int column)
– Notifies all listeners that the value of the cell

at [row, column] has been updated.
• fireTableDataChanged()
• fireTableRowsUpdated(int firstRow, int

lastRow)
• fireTableRowsDeleted(int firstRow, int

lastRow)
• fireTableRowsInserted(int firstRow, int

lastRow)
@Override
public void setValueAt(Object value, int row, int col) {

records[row][col] = (String)value;
fireTableCellUpdated(row, col);

}

15

• addTableModelListener(TableModelList
ener l)
– Adds a listener to the list that's notified

each time a change to the data model
occurs.

myTableModel = new MyTableModel(records, colNames);
myTableModel. addTableModelListener(this);

16

14/04/2012

5

17

<< interface >>
TableModel

addTableModelListener(l : TableModelListener) : void
getColumnCount() : int
getRowCount() : int
getValueAt(row : int, col : int) : Object
isCellEditable(row : int, col : int) : boolean
removeTableModelListener(l : TableModelListener) : void
setValueAt(value : Object, row : int, col : int) : void

AbstractTableModel

fireTableCellUpdated(row : int, col : int) : void
fireTableDataChanged() : void
fireTableRowsDeleted(startRow : int, endRow : int) : void
fireTableRowsInserted(startRow : int, endRow : int) : void
fireTableRowsUpdated(startRow : int, endRow : int) : void

Summary of AbstractTableModel
Using JTable

• JTable is useful for displaying, navigating,
and editing tabular data.
– It is the view of the data.
– It is a very complicated class. We will only see

a tiny portion of the features.
• When you create a JTable, you can

associate a data model to the table.
JTable tableView = new JTable(tableModel);

JTable tableView = new JTable();
tableView.setModel(tableModel);

18

• When you associate a data model with a JTable, the
table is automatically added as a listener of the
data model.
– If the data is changed, the cells in the table will also be

changed accordingly.
• In the data model, if you have specified a cell as

editable, you can enter the value of the cell in the
table. The new value will be propagated to the data
model.
– If the cell at [row, col] is editable, i.e.

isCellEditable(row, col) returns true, you can change
the value of the cell at [row, col] in the table.

– The runtime calls the setValueAt method of the data
model to make the change to the data model.

19

public class MyTableModel extends AbstractTableModel

…
@Override
public boolean isCellEditable(int row, int col) {

if (col == 1) return true;
else return false;

}

@Override
public void setValueAt(Object value, int row, int col) {

records[row][col] = (String)value;
fireTableCellUpdated(row, col);

}

// Make each cell selectable.
tableView.setRowSelectionAllowed(false);

20

14/04/2012

6

TableModelListener
• TableModelListener is an interface which should be

implemented by all the classes that want to be
notified of the changes to the data model.
– The interface has a tableChanged method which

specifies the operations that the listeners want to
carry out once being notified of the changes to the
model.

• Object needs to register with a table model using
the model’s addTableModelListener method.

• The table model will notify the listeners of the
changes to the model by calling one of the fireXXX
methods.

• Once the listener is notified, the listener executes
its tableChanged method.

21

public class MyTableModelListener implements TableModelListener

@Override
public void tableChanged(TableModelEvent e) {

if (e.getType()==TableModelEvent.DELETE)
System.out.println("it's delete");

if (e.getType()==TableModelEvent.UPDATE)
System.out.println("it's update");

System.out.println("first row = "+e.getFirstRow());
System.out.println("last row = "+e.getLastRow());

}

fireTableRowsDeleted(1, 5);

fireTableRowsUpdated (1, 5);

22

Writing a JTable application
• Write the code for implementing the data model

– Subclass the AbstractTableModel
– Must implement getColumnCount, getRowCount,

getValueAt
– Implement isCellEditable and setValueAt if you want to

update the model through the table
– Call the fireXXX methods when notifying the listeners

for changes to the data
• Write the code for implementing the listeners of

the data model
– Implement the TableModelListener interface
– Implement the tableChanged method

23

• Write the code that uses JTable
– Create a data model object
– Create a JTable object
– Associate the data model object with the

JTable object
– Create listeners of the data model (if

needed)
– Register the listeners with the model
– Layout the application

• JTable is normally placed in a JScrollPane

24

14/04/2012

7

JTable Model Stats view

listener

lis
te

ne
r

(im
pl

ic
it

)

1. setValueAt 2. fireTableCellUpdated

2. fireTableCellUpdated

25

public class MyTableModel extends AbstractTableModel
String[][] records;
String[] colNames;

public MyTableModel(String[][] records, String[] colNames)
public String[][] getData()
public String getColumnName(int column)
public int getColumnCount()
public int getRowCount()
public Object getValueAt(int row, int col)
public boolean isCellEditable(int row, int col)
public void setValueAt(Object value, int row, int col) {

…
fireTableCellUpdated(row, col);

}

26

public class StatisticsPanel extends JPanel implements TableModelListener
private JTextField averageField, stdDevField, medianField;
private MyTableModel tabMod;

public StatisticsPanel(MyTableModel tabMod)

public void paintComponent(Graphics g) {
super.paintComponent(g);
String[][] records = tabMod.getData();
double stdDev = getStdDev(records);
double average = getAverage(records);
int median = getMedian(records);

averageField.setText(formatNumber(average));
stdDevField.setText(formatNumber(stdDev));
medianField.setText(formatNumber(median));

}

public void tableChanged(TableModelEvent e) {
repaint();

}

calls

27

public class Main extends JFrame

private MyTableModel tableModel;
private JTable tableView;
private String[] columnNames = { "Sudent ID", "Mark" };
private String[][] records;

public Main() {
… // code for reading data from a file to populate records
// create a model
tableModel = new MyTableModel(records, columnNames);
// create a table and associate the model with the table
tableView = new JTable(tableModel);
// create a model listener
StatisticsPanel statsView = new StatisticsPanel(tableModel);
// register the listener with the model
tableModel.addTableModelListener(statsView);
setupPane(tableView, statsView);

}
28

14/04/2012

8

Model-View-Controller architecture
(MVC)

• The Model-View-
Controller architecture
(MVC) decomposes a user-
interface design into
three separate parts.

• A model that represents
the data for the
application.

• The view that is the visual
representation of that
data.

• A controller that takes
user input on the view and
translates that to changes
in the model.

29

• In practice, the view and controller require a
tight coupling
– Some of the components, e.g. a table cell, allow you

enter data while others, e.g. button, don’t.
– So, you must know the specifics of the view in

order to make the controller work
• Java Swing collapsed the view and control to a

user-interface component.
– A model and a UI component
– Called separable model architecture

30

benefits of the separable model arch.
• Consistency of the views

– All registered listeners (views) of a model are
guaranteed to be notified when the model changes its
state

• Flexibility
– Views can easily be added to (and removed from) a

model at run-time
• Maintainability

– It’s very easy to add new views
• All that’s required is to write a new implementation of the

listener interface
• Existing model and view classes need not be changed

– Changes to the code implementing the model does not
affect the code implementing view and vice versa

• The views obtain/modify the data through the methods
defined by the interface which the model must implements

31

reviews
• Understand the methods defined or inherited in

AbstractTableModel.
• When you implement your data model as a subclass of

AbstractTableModel, which methods in
AbstractTableModel must be implemented? Which
methods should be implemented if you want to update the
data through the table that your model is associated with?

• In your implementation of the data model, can you
implement other methods apart from the ones defined in
AbstractTableModel?

• How does a model notify its listeners that the data in the
model have changed?

• In your implementation, where do you place the code that
make the model notify the listeners of the changes to the
data?

32

14/04/2012

9

• Which kind of classes should implement the
TableModelListener?

• Where do you write the code for handling the
TableModelEvent in the listener’s class?

• In the listener’s class, how do you find out how the table
has been changed?

• How do you make a data model know that a listener object
wants to be notified of the changes to the data model?

• How do you associate a data model object with a JTable
object? Do you need to explicitly add the JTable object as
a listener of the data model object?

• What are the three components in the model-view-control
architecture? What tasks does each of the components
do?

• Why does Java Swing not use the model-view-control
architecture?

• What are the benefits of the separable model
architecture?

33

