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Abstract

We consideB-candidate elections under a general scoring rule and derive precise conditions for
a given voting situation to be strategically manipulable by a given coalition of voters. We present
an algorithm that makes use of these conditions to compute the minimum/sifex manipulating
coalition for a given voting situation.

The algorithm works for any voter preference model — here we present numerical results for IC
and for IAC, for a selection of scoring rules, and for numbers of voters up to 150. A full description
of the distribution ofM is obtained, generalizing all previous work on the topic.

The results obtained show interesting phenomena and suggest several conjectures. In particular
we see that rules “between plurality and Borda” behave very differently from those “between Borda
and antiplurality”.

1 Introduction

Following the proofs by Gibbard [5] and Satterthwaite [15] that every reasonable voting rule can be
manipulated, several authors have tried to quantify the probability of such an event, under various as-
sumptions on the distribution of voter opinions. These papers have differences in: the definition of
manipulability; the measure of manipulability; the assumptions on voter preferences; whether the an-
swers sought are exact (either derived via numerical computation or via an analytic formula for a fixed
number of voters) or asymptotic (as the number of voters grows large). They also differ markedly in
their generality and mathematical sophistication.

The present article considers in detail the problem of coalitional manipulation of a positional voting
rule. Our aims throughout are generality, simplicity and rigour. We consider a general positional voting
rule, derive linear equations and inequalities describing exactly whether or not a given voting situation
is manipulable by a given subset of the voters, and use these to show how to efficiently compute the
minimum size of a manipulating coalition. We present numerical results based on enumeration of the
manipulable voting situations, for positional voting rules in Baalternative case. This allows a com-
plete picture of the distribution of the size of a minimum manipulating coalition for moderate numbers
of voters, and suggests various conjectures about the asymptotic behaviour.



The layout of the paper is as follows. In the remainder of this section, we outline in detail our
basic assumptions and definitions. In Section 2 we derive the linear systems mentioned above, and
solve them analytically as far as possible. In Section 3 we describe our enumeration algorithm and its
implementation. In Section 4 we present a selection of interesting numerical results obtained using our
program. In Section 5 we further discuss the significance of these results and discuss the relationship
between our work and that of other authors. Finally, in Section 6 we discuss possible extensions and
future work.

Impatient readers may wish to jump straight to the linear conditions in Figure 1, read Theorem 2.5,
peruse the tables and graphs in Section 4 and then go on to the open problems in Section 6.

1.1 Basic definitions

We suppose that there awe alternativesor candidates, . .., a,, for an election. We deal fully only

with the case ofn = 3 alternatives, but much of our methodology carries over to gener@owever
whenm > 4, exhaustive computation of exact results rapidly becomes infeasible for even moderate
values ofn). We usually writea, b, c instead ofay, as, as.

Definition 1.1. A profile is specified by giving aopinion or preference(a linear ordering of the alter-
natives) for each voter.

There areM = m/! different possible opinions, which in our case we order lexicographically in the
usual way: forn = 3 this isabc, ach, bac, bea, cab, cba.

Definition 1.2. The above ordering of opinions induces a patrtition of thelsef voters into subsets
V1,...,Vu. We write v; for the cardinality of);. For each subseX C V), the above patrtition of

V induces a corresponding partition &f, and we writex; for the cardinality ofX; := VN X. The
M-tuple (v, ... ,vyr) is called thevoting situationcorresponding to the voters’ preferences. The set of
all possible voting situations we denote 8y

Remarkl.3 The cardinality ofS is given by the binomial coefficier(t' '), wheren = |V| is the

number of voters. Fam = 3 this number is asymptotically of order, whereas the number of profiles
isn!.

For voting rules which aranonymous(invariant under all permutations of the 3&of voters), we
need only consider voting situations, not profiles. We shall do this throughout.

Definition 1.4. A positionalor scoringrule is defined for a givem by a realm-tuplew whose entries
are in (not necessarily strictly) decreasing order. Alternativeceives scoray; from a voterv if and
only if & is in position: of v's preference order. The total scq¥g of & is obtained by summing the
scores given t& by each voter. The alternative with highest total score wins.

Definition 1.5. Thescoreboardssociated to a voting situatietis them-tuple of score$|ai|, . . ., |am|).
We denote byy thescore mapsending an element of to the associated scoreboard.

Remarkl.6. In the casen = 3 we have

la| = wi(v1 + v2) + wo(vs + v5) + ws(va + v5); 1)
|b| = wl(l/g + 1/4) + wg(l/l + Vﬁ) + ’LU3(I/5 + 1/2);
‘C| = w1(1/5 + 1/6) + wg(llg + I/4) + w3(1/1 + I/3>.



1.2 Tie-breaking for positional rules

All positional rules contain the possibility of tied scores for first place. In this event, a separate tie-
breaking rule will be needed. One common tie-breaking rule is to resort to a pre-determined arbitrary
order (for example, lexicographic order, or the French practice of allowing the oldest candidate to pre-
vail). Though simple to implement, this is not always so convenient for analysis. Another method is
to give one of the voters a casting vote. However, this is even less tractable from a theoretical point of
view, as it means that the winner can no longer always be determined from the voting situation only, but
may require consultation of the full profile.

Here we will use theandomtie-breaking method. That is, in the event of a tie, the winner will be
chosen at random, with all candidates with the maximum score being equally likely to be chosen. This
method complicates the voting by introducing probabilistic considerations, and of course does not yield
a voting rule in the classical deterministic sense. However, it has the great advantage that it preserves
the symmetry among candidates (such rules are cakedral). This is important for the large-scale
computational studies undertaken in this paper, as the symmetry can be exploited to reduce the amount
of work required. Furthermore, it can be strongly argued that such a tie-breaking method is fairer than
any method that breaks the symmetry between candidates.

1.3 Manipulation

We present below the basic definitions used throughout this article. There are many other concepts of
manipulability; we discuss this further in Section 5.

Definition 1.7. We define manipulability of a voting situation in stepwise fashion as follows.

¢ Arule ismanipulableat a voting situatiow if and only if there is exists a profile giving rise to
o, at which the rule is manipulable;

e a rule is manipulable at the profiteif and only if there exists a manipulating coalition at this
profile;

e asubsefX C Vis amanipulating coalitionat the profiler if and only if there is a profiler’ # «
which agrees withr onV \ X and is preferred ta by all members ofX;

e — a profilexr’ with (untied) winning candidate’ is preferredby voterv to a profiler with
(untied) winning candidate if v prefersa’ to a;

— To compare profiles in which scores are tied for first place, it is necessary to compare prob-
ability distributions on the set of candidates. We do this in the standard sense of stochastic
order. That isp prefersn’ to = if for eachk = 1,...,m the probability of electing one of
his most-favoured: candidates undet’ is no less than under. (If 7’ # =, the condition
implies that this probability will be strictly greater for sorkg

Note in particular that a voter will never prefer to increase the probability of electing the candidate he
favours least, or to decrease the probability of electing the candidate he favours most. In three-candidate
elections, these two conditions constitute a full description of the preference rule.

Example 1.8 (manipulation). Consider the plurality rule defined by the weight vedtoro, 0), and an
election in which sincere preferences are such 4hatters have the opinionbe, 3 have the opinion
bca, and2 have the opiniorab. The scoreboard is the€d, 3, 2) anda is the sincere winner.

The subset consisting of all tiea andcab voters can manipulate. Indeed, if thex voters vote
strategically agba and thecab voters continue to voteub, then the original winned: is replaced by:.
Each of the types of voters in the coalition prefers the new election outcome to the sincere one.



Sincere outcome Manipulated outcome Possible? Coalition member types | Type

1. |a| > [b] > |c| | (i) bwins yes bac, bea, cba (preferd to a) I
(i) a, b tie yes bac, bea, cba (preferd to a) I
(i) ¢ wins yes cab, cba, bea (preferc to a) [
(iv) a, ctie yes cab, cba, bea (preferc to a) I
(V) b, ctie no
(vi) 3-way tie no

2. la] =1b] > |¢| | (i) a wins yes abe, ach, cab (preferatobd) | |l
(i) b wins yes bac, bea, cba (preferd to a) Il
(iii) cwins no
(iv) a, ctie yes cba, cab, acb (preferctob) | i
(v) b, ctie yes cab, cba, bea (preferctoa) | |l
(vi) 3-way tie no

3.lal =1b| = || | any no

Table 1: Manipulation of 3-candidate elections.

Note that no manipulation in favour éfis possible in this situation, since the only voters preferring
b to a are already contributing the maximum scoré &nd the minimum ta.

Example 1.9 (manipulation involving ties). Consider the Borda rule, defined by the weight vector
(2,1,0), and an election in which sincere preferences are such thater has the opinionbc, 3 voters
have the opinionch, 4 voters have opiniohac, and3 voters have opinionba. The scoreboard is then
(12,12,9).

The subset consisting of atkkb and cba voters can manipulate. If all of them change their votes
to cab, then the new scoreboard beconiég, 9, 12). Note that all members of the coalition prefer
to b and hence prefer this election outcome in the sense of stochastic order. The winning probability
distribution on the candidates has changed ftap2, 1/2,0) to (1/2,0,1/2).

Example 1.10 (minimal manipulation). Consider the rule with weight vectét, 3, 0) and the voting
situation in which the opiniorcb is held byl voter, and the opiniongbc, bac, cab, andcba are each

held by2 voters. The scoreboard ({84, 20, 19). A manipulating coalition can be formed by the twa
voters and one of thigxc voters (who all change their vote &oa, thus handing victory té). The reader

may verify that this coalition is minimal, that is, that no coalition with fewer than three members can
manipulate. (A coalition of oneba and onebac could achieve a 3-way tie, but this is not a preferred
outcome for théac voter.)

2 Manipulation of scoring rules in the 3-alternative case

For a fixed scoring rule defined by its weight vectora fixed voting situatiorr, and a fixed subset
X C V, we shall determine whethe¥ is a valid manipulating coalition with the power to change the
outcome of the election. Without loss of generality, the voting situatigsm such that the candidates’
scores are in non-decreasing ordef:> |b| > |c|. The possible types of manipulations are itemized in
Table 1.

We note that there are three essentially different kinds of manipulation possible. In cases 1(i), 1(ii),
1(iii), and 1(iv), there is a clear winner, and manipulation is in favour of one of the other candidates,
who is promoted to clear or joint winner. These manipulations we call Type I. In cases 2(i) and 2(ii),
there is a tie for first place, and one of the tied candidates is promoted to sole winner by manipulation.
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These we call Type Il manipulations. In cases 2(iv), 2(v), there is a tie for first place, and the bottom
candidate is promoted to tie with one of the original winners. These we call Type Il manipulations.
As noted in Table 1, some types of manipulations never occur. We deal with these first.

Theorem 2.1. For a 3-candidate positional voting rule, no valid coalition can ever manipulate the
outcome in any of the following ways.

(i) If ais the sincere winner: creation of a tie between the other two candidaiad c.

(i) If the sincere outcome is a tie betweemandb: promotion of the third candidateto the status of
sole winner.

(i) If the sincere outcome is a tie between all three candidates: creation of any other outcome.
(iv) Under any circumstances: creation of a tie between all three candidates.

Proof. Suppose that is the sincere winner. A coalition to create a tie betwéemd ¢ must consist
entirely of voters who prefer bothandc to a (typesbca andcba). Other voter types will not prefer the

b, c tie to a clear win fow in the sense of stochastic order, because it has a higher probability of electing
their least-favoured candidate. These voters are already contribugir{the minimum possible) to

the score ofi, SO no strategic voting by them can decrease the scase Sfmilarly, they are already
contributing(w; + w2) /2 (the maximum possible) to the average scoreafidc, so no strategic voting

by them can increase that average score. Hence, they are unable to bring about any situation in which
the average score éfandc exceeds the score af In particular, the scores éfandc cannot be made

equal and greater thars score.

The other cases are handled by similar arguments. For (ii), the only possible coalition members are
those who prefer to botha andb. For (iii), there are two sub-cases. Making any single candidate
the sole winner will be preferred only by voters who rank that candidate first, while creation of any
two-way tie will be preferred only by voters who rank the other candidate in last place. For (iv), if there
is a sincere sole winner then the 3-way tie will be preferred only by voters who ranked that candidate
last. If the sincere outcome is a 2-way tie, the 3-way tie will be preferred only by voters who ranked the
other candidate first. m

2.1 Linear conditions describing manipulability

We now turn to the class of possible manipulations described in Table 1. We shall derive linear systems
of equations and inequalities that describe exactly which voting situations are manipulable. Each of the
types I-lll need only be analysed once, since the other cases of the same type are obtained by applying
an appropriate transposition of the candidates. We consider the type | case|afheré| > |c| and
manipulation is in favour ob, the type Il caseéa| = |b| > |c| where manipulation is in favour &f and
the type Ill caséa| = |b| > |c| where manipulation is in favour ef

To save space we shall writg — w; asw;; from now on. Suppose that a manipulating coalition
containse; voters of typei (i = 1,...,6). We first consider the type | and type Il manipulations — the
results are displayed in Figure 1. All members®dimust prefe to a, so we haver; = z2 = x5 = 0.
It is clear that if manipulation is possible at all, it is certainly achievable by each voter rahKiirsg
(this is a dominant strategy for such voters).

Let y1, yo denote the numbers of voters who strategically vaie bca. The strategic scores then



Figure 1: Integer linear systems describing type | and type Il manipulability by a given coalition. The
coalition X can manipulate if and only if there exigt, y» satisfying these conditions.

la| — [b] < z3w1 + Taw31 + Tewsz + Y1wi2 + Y2wis (IP: Ib)
|| — |b] < z3w31 + Taw21 + Tewi2 + Y1wi3 + Yawi2
T3+ T4+ Te = Y1 +Y2
0<z; <yforl1<:<6
0<y1, 0<wy
all z;, y; are integers

0 < z3wa1 + T4ws3 + Tewsz + Yy1wi2 + Yowis (IP: 1ib)
c| = [b] < w3w31 + Tawar + Tewi + Y1w13 + Yawie
T3+ Ty +Te = Y1 +Y2
0< g <yforl1<:<6
0<y1;, 0<uy
all z;, y; are integers

becomédal’, 0|, |c|’, where

lal" = lal + (y1 — @3)w2 + (Y2 — T4)ws — Tews;
Bl = 16l + (91 — w3)w1 + (y2 — za)wr — wew;

el = lel = (11 — w3)ws + (y2 — z4)wz — Tew1.

For b to become the sole winner, or tie with it is necessary and sufficient that the inequalitig's>
lal’, |b" > |c|" be satisfied. We also know that + y» equals the size of the coalition. These conditions
immediately yield the first system shown in Figure 1. The type Il analysis is very similar and yields the
second system of Figure 1.

The other cases may be obtained by applying a permutatien:b induces the permutatiary <
x3,To <> T4,T5 < Zg, While the transpositiom < c¢ induces the permutation; < z9,x3 <«
T5,T4 <> TG

The manipulations denoted in Table 1 as “Type III” are more complex. These are rare manipulations
in which a tie is replaced with another tie (see Example 1.9). Members of a coalition manipulating in this
way have no obvious dominant strategy: since the goal is to match two candidates’ scores exactly, any
of the six possible candidate orderings could potentially be a useful strategic vote. We shall see below
(Theorem 2.3) that for the purposes of this article we may ignore type Ill manipulations. However, we
record the defining linear system in Section 6 for possible future use.

It turns out that we need never consider type Il manipulations to determine whether a situation is
manipulable, or to compute the minimum size of a manipulating coalition. We now prove this.

Lemma 2.2. If w = (1,0, 0) (plurality rule) orw = (1, 1, 0) (antiplurality rule), type Ill manipulations
are never possible.



Proof. By symmetry we need only consider the case where the sincere regults|b| > |c| and we

seek to being about a resydtf = |c| > |b|. Only voters with opiniongab, cba or acb would prefer

the manipulated outcome. First consider plurality. No strategic action by these voters can increase
(la| + |c|)/2 or decreasé|. Similarly in the antiplurality case, none of the willing voters can decrease
(la| + |b])/2 or increasec|. Thus in no case canbe promoted abovito tie with a. O

Theorem 2.3. If a voting situation is type Ill-manipulable by a coalitiol, then it is also type II-
manipulable by a subset of.

Proof. We may assume by Lemma 2.2 that we are dealing with neither plurality nor antiplurality. By
symmetry we need only consider the situation when= |b| > |c| and we seek to bring about a tie
betweeru andc, with b the clear loser. Suppose thitis a coalition that can manipulate the outcome
by means of type Ill manipulations. We have= x3 = x4 = 0.

If ¢ # 0 then the coalition consisting of a singlen from X may strategically votéca, promoting
bto sole winner. Similarly ift5 # 0 then a singleab may voteacb, promotinga to sole winner. Finally,
we cannot haves = x5 = 0, since no strategic action by voters of typé can increaséz:| — [b|. O

2.2 Minimum coalition size

In the present article, we are chiefly interested in whether a given situation is manipulable by some
coalition, and if so, what is the minimum size of a manipulating coalition. As we have seen, these
questions may be reduced to integer linear programs of the form

min f(x) (Z(z,z7))
s.t.(z,y) € Re
zezZM yezh,

wheref(x) = Zf‘il x;, Ry is alinear polytope, and for three candidatés= 6 and N = 2. (The linear
conditions definingR, may include both strict and non-strict inequalities.) The situation is manipulable
(in the particular way being considered) if and onlZ{fZ, Z) is feasible; the optimal value @f(Z, Z)
gives the minimum coalition size.

Exact solution of such problems requires substantial computation in the worst case. Of course, we
are dealing with a very small problem. However, several such problems must be solved for each voting
situation, so it is important that they be solved as efficiently as possible. We shall now discuss this issue
in detail.

ConsiderZ(Z,Z). To begin with, define the following simpler problem.

min f(z) (P(R))
st.x e Ry
zeRY,

whereR; = {z € RM | 3y € RV with (z,y) € Ry}. Geometrically,R; is the projection of the
polytope R, onto the subspace where gl are zero, and so it is also a linear polytope. The problem
P(R) is thus a linear program; a relatively tractable problem. It is possible to dBiifeom R, using
the Fourier-Motzkin algorithm [16].

We now list some obvious but useful relations between the integer prabf&nz.) and the projec-
tion P(R). In the Lemma below, note that the optimum7fR) may not be attained if there are strict
inequalities in the definition oR;; if the optimum is attained then its value is of course



Lemma 2.4 (relation betweeriZ(Z, Z) and P(R)). The following facts hold.
1. If P(R) is infeasible, then so §(Z, Z).

2. Suppose thaP(R) and letm = inf{f(z) : z € R}. Let(z,y) € Ry be an integer point. If
either of the following conditions hold, thém, y) is optimal forZ(Z, Z).

e P(R) attains its optimal value and(z) = [z]
e P(R) does not attain its optimal value anfdz) < m + 1
d
We now derive explicit descriptions &f;, Ro. The results are summarized in the following theorem.

Theorem 2.5 (constraints definingP). Let X be a manipulating coalition for a given voting situation.
Letz; be the number of members ¥fof typei, fori = 1,...,6. Then

1. if|a] > |b] > |c]|, then
O0=2x1 =29 = Ts (PROJ: |b)
la| — |b] < wazxs + wiawe
la| = 2b] + || < 3wizwe
or
0=x1 =29 =23 (PROJ |C)
la] — [c] < wazws + wi2z4
|a] — 2‘C| + |b| < 3wioxy

2. if|a] = [b| > ¢, then
0=x1 = a9 =I5 (PROJ ”b)

0 < wozxs + wi2Ts
or

0=2x3 =124 =1 (PROJ: IIa)

0 < wozxy + wioTs

3. it cannot be the case that| = |b| = |¢|.

Proof. We derive the conditions anin each case by systematically applying Fourier-Motzkin elimina-
tion.

Consider the constraints for Case 1(i)/1(ii) displayed in (IP: Ib). First use the equality constraint to
eliminateys. This yields the equivalent system

la| — |b] < wazws + wizawe + w32y1 (IP:I'b)
lc| — [b] < wzaxz + 2wiaxes + wasyr
0<wz3+mw4+ 26— Y1
0<az;<vforl<i<6 (2)
0<uy
all z; andy; are integers.



We now relax the condition op; to y; € R. For each pair of inequalities where the coefficient of
y1 occurs with different signs, we form a new inequality not involvingby forming the appropriate
positive linear combination of inequalities. This yields

la] — [b] < wazws + wixe
le| — ‘b‘ < waozxy + (2wi2 + wa3)we
la| — 2]b] + |¢| < 3wi2z6
0<x3+z4+ 26
0<z, <yfor1<i<6
all z; are integers.

The second and fourth inequalities are redundant gince |c| and allz; are nonnegative. Thus we
obtain the stated system (PROJ: Ib). The Case 1(iii)/(iv) conditions are derived similarly and displayed
in (PROJ: Ic).

Now consider Case 2(ii), whose integer linear system is displayed in (IP: 1Ib). A completely anal-
ogous argument to the previous case yields the inequalities in (PROJ: 1Ib). We obtain the equivalent
system

0 < wazxs + wiaxe + W32y1 (IP: 1I’b)
le| — |b] < wzaxs + 2wi2w6 + Wwasy1
0<x3+w4+ 26— 11
0<z; <y for1<i<6 3)
0<mn
all z; andy; are integers.

and then the system (PROJ: IIb) by Fourier-Motzkin elimination. Similarly, Case 2(i) yields the system
(PROQOJ: lla). O

The linear programs in Theorem 2.5, along with Lemma 2.4 can be used as a shortcut to solve the
integer programs of forE(Z, Z). However, caution is required: a feasible point fR), even if it
has integral coordinates, need not correspond to any feasible poifitZoZ). Indeed, it is possible
for a solution toP(R) (with integral coordinates) to exist even when the original probfé, Z) is
infeasible, as demonstrated by Example 2.6 below. This has apparently not been noticed by previous
authors, perhaps because of Theorem 2.9 below, which covers the three most commonly studied rules,
namely the plurality, antiplurality and Borda rules.

Example 2.6 P(R) feasible butZ(Z,Z) infeasible). Consider the weight vectar, 3,0) and the

voting situation in whiclt8 voters have sincere preferenge:, 1 voteracb, and 1 voterab. The scores

arela| = 16, |b| = 12, |c| = 7. The coalition consisting of the thréec voters (5 = 3 and all other

x; = 0) satisfies the first set of necessary conditions given in Theorem 2.5, suggesting that it might be
possible to manipulate in favour 6{Case 1(i)/(ii)). But the necessary and sufficient conditions (IP: Ib)
require the existence of integeysg y- such that

y1+4y2 > 7, dy1 +y2 > 7, andy; +y2 = 3,

which leads to the impossible conditidn< 3y, < 5.



Example 2.7 (optimality gap betweerfZ(Z, Z) and P(RR)). Consider the voting rul€s, 7,0) and the
voting situation in which 4 voters have sincere preferesige 1 voteracb, 3 votersbac, 6 votersbca,
and 6 votergab. The scores ar| = 103, |b| = 100, and|c| = 97. Suppose we are interested in Type |
manipulations in favour of. Solving the linear program (PROJ: Ic) produces an optimum at the corner
x5 = 3/7, x4 = 3. The nearest feasible point with integer coordinates;is= 1, 4 = 4, but this is
infeasible for the original problen¥(Z,7Z)). Indeed, a coalition of onezb and fourbca voters cannot
manipulate; the best scoreboard they can produce (by all vatir)gs (96, 103,101), leavinge still in
second place.

If a fifth bea voter is added to the coalition, the scoreboard becai®gs 02, 102), but this is not
a valid manipulation either, as the new outcomeédaie) is not preferred to an outright win far by
the cab voter. Adding the sixttbca voter to the coalition produces an outright win foscoreboard
(96,101, 103)). This seven-member coalition is not minimal, however. A coalition of thésiwoters
may also manipulate, producing the scorebgdfi, 94, 103) (note that all coalition members prefer
theac tie to an outright win fom).

The indivisibility of votes plays an important role in this situation. If fractional votes were per-
mitted, only 3.44 votes (3.0dca and 0.43cab) would need to be changed to produce the scoreboard
(99.99, 100, 100.01) and an outright win for.

Remark2.8. Example 2.7 shows that the minimum coalition size can be more than the ceiling of the
optimum of P(R).

2.3 Computing the minimum coalition size

We now consider the various cases in detail, and simplify the integer programming problems analytically
as far as possible. We make liberal use of Lemma 2.4.

First we treat the case| = |b| > |c|. The relaxation (and hence the original IP) is infeasible if
wosvs = 0 = wiavs. From now on we assume that it is nonempty. Note thBP(R) = 0.

Suppose first thato14 > 0. Then optimality is attained at; = 0, z¢ = 1, which is the projection
of the feasible poing, = 0,92 = 1,23 = 0 = x4, z¢ = 1 satisfying (IP: llb).

On the other hand, suppose thabygs = 0 butwssrs > 0. From (IP: II'b), we see thatwezzs <
wasy1 < |b| — |c| —wesx3 must hold. Since alsg, > 0, this yields the constraiit < wasxzs < |b] —|c|.

If these last inequalities have no integer solutionafgr= 1, the problem is infeasible. Otherwise, we
cansety; = 0,90 = 1,24 = 0,23 = 1,26 = 0 in (IP: lIb) and obtain a solution that projects to a
feasible point ofP(R), which is optimal as above.

In summary, in this case the minimum size of a coalition that can manipulate in favéus af
when such manipulation is possible. Such manipulation is impossible preciselywhen= 0 and
eitherwys = 0 or was > |b| — |c|. A similar argument deals with manipulation in favourqfand we
already know that no manipulation in favour®is possible. Thus the minimum size of a manipulating
coalition when|a| = [b| > |c| is 1, and we have precise conditions in termswénd the scoreboard for
when this is possible.

We now move on to the type | cases, whete> |b|. We need only consider case 1(i)/(ii), where
b but notc has the maximum score after manipulation. That is, the feasible regiBfRY is given by
(PROJ: Ib) and the feasible regiondfZ, Z) by (IP: 1b).

If 3wiavs < |a| — 2|b| 4 |c| OF wasvs + wiavs < |a| — |b], thenP(R) is infeasible and hence so is
I(Z,7).

Otherwise,P(R) is feasible. We may then consider two subcases: > ws3 (“easy”) andwis <
weg (“hard”); see Figure 2.3.

First, the easy case. Note that we have > 0. If wiav > |a|—|b| then lettingt := (|a|—|b]) /w12,
the optimal value ofP(IR) corresponds to the poiii®, ¢); this optimal value is precisely By Lemma
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Figure 2: The easy and hard cases of Type | manipulation.

2.4 we see that an optimal solutionDfZ, Z) is given byzs = t = y», with all otherz; andy; equal
to 0. The optimal value is thug|. Similarly, if 5 < ¢ (note that this impliesvues > 0), then, letting
s = wia(t — vg) /was, the optimal value o (R) corresponds to the poifi, v4), and we see by Lemma
2.4 that an optimal solution &f(Z, Z) is given byxs = [s]|, z¢ = v6, y1 = 0, andys = 3 + x¢. Note
that in this easy cas&(Z, Z) is feasible if and only ifP(R) is.

Now for the hard case. liasvs + (Ja] — 2|b| + |c|)+/3 < |a| — |b| (note this implieswi2 > 0),
then the point(vs, (|a| — 2]b| + |¢|)+/(3wi2)) does not satisfy the first inequality of (IP: 1b), st
is a triangle and the optimal value &f(R) corresponds to the poitiis, (Ja| — |b] — wesrs)/wi2).
We can then use Lemma 2.4 to verify that an optimal solutiofi (@, Z) is given byzs = v3, 6 =
[(la] = [b] — wasvs) /wi2], y1 = 0, andys = z3 + 6.

If, on the other handwasvs + (|a| — 2]b| + |¢|)+/3 > |a|] — |b], then the optimal value oP(R)
corresponds to a point on the lower edgefif as depicted in Figure (It is worth noting that the point
(0, (|a| — 2]b] + |¢|)+/(3wi2)) never satisfies the first inequality of (IP: Ib).) There does not seem to be
an exact expression for the minimum coalition size in this case, but we have the following fast method
for computing it. The least possible valueaf is «f = (1 + [(|a|] — 2[b| + |¢])/(Bwi2)|)+ (or O if
w2 = 0). Consider in turn the values; = zg, . . ., 6. For a given value of¢, the least possible value
of zg isx3 = [(|a] — |b] — wi2xe) /was]; if this is strictly less thart|b| — |c| + 2wi226) /was, then these
values ofrs andzg along withy; = 0 andy, = x3 + x¢ are a feasible point &f(Z, Z). Moreover, the
first feasible point found by this method will be optimal f6(Z, Z). This is easy to see. Suppose that
another pointz}, x5) with o5 > 26 anda’ + x5 < 23 + 26 is also the projection of a feasible point for
(Z(z,7)). Then

! / ! /
wosxy + wioty < wezks + wiake + was(xy — T3 + T — T6)
< w933 + Wwioke — Wo3
< la| —|b],

since(zs — 1, z¢) is infeasible for P(R)).

In this hard caseZ(Z,Z) may be infeasible even P(R) is feasible (an example is given in Ex-
ample 2.6); the iterative method of the previous paragraph will then reaehvg without finding any
solution.

The analysis above yields the following result.

Theorem 2.9. If wis > weg Or w2 = 0, then there is a solution t@P: Ib) if and only if there is a
solution to(PROJ: Ib) Furthermore, the optimal value dfP: Ib) is the greatest integer not exceeding
the optimal value ofPROJ: Ib)
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Proof. If w1y > wag, this follows from the easy-case arguments above.
For w2 = 0 (the anti-plurality rule), we must consider the hard case. Without loss of generality,
wog = 1. If |a| — 2|b] + |c| > 0 0oruvs < |a| — |b], P(R) is infeasible. OtherwiseR (R) is feasible, and
we must apply the iterative algorithm discussed above. We begimwyith 5 = 0 and corresponding
x3 = |a|—|b|; since this is less thah| — |¢|, we have immediately found an optimal solutiorZgf, Z).
The optimal value for bot#(Z, Z) andP(R) is |a| — |b]. O

3 Description of the algorithm

Our exact results are of course based on enumeration of voting situations. However, our tie-breaking
methods allow us to make use of symmetry to reduce the search space, as we now describe.

The groupG of all permutations of the candidates acts on theSset voting situations in a natural
way. Whether a voting situation is manipulable is invariant under permutations of the candidates, so is
a property of an orbit off on S.

Clearly, we would like to examine only one representative from eaarbit on S. However, a
simple rule for carrying this out is not apparent. Below we give a simple rule that in most cases chooses
a single representative, but in the worst case may choose the entire orbit.

Theorem 3.1.LetF' = {0 € S: |a| > |b| > |c|}. Definec: S — Z by

(o) Hm;' where thd; are the multiplicities of the distinct scoresgife F;
clo) = K
0 otherwise.

Then for eactG-invariant functiony on S, we have

3 el@)u(z) = 3 ula).

c€ES cES

Proof. The groupG acts naturally on the scoreboards, and the score map taking voting situations to
scoreboards commutes with the actiontaf Thus eachG-orbit O on S is mapped onto &:-orbit of
scoreboards.

Now O contains at least one elemensuch that its scoreboardis in nonincreasing ordefa| >
|b| > |c|. The size of thex-orbit of s is preciselyc(z). Also O is the disjoint union of fibresa ! (¢) of
the score map, and there affer) of these. Furthermore all fibres have the same cardinality. Thus we
have

Yocn(z) = puz) Y ez) =p) Y ez) = pla)e(x)la(s)] = u(@)|O] =Y ulz),

2€0 z2€0 z€0,a(z)=s 2€0
and summing over all7-orbits gives the result. O

Example 3.2. Consider an election under the Borda rule. If the voting situatiqn,is, 0,1, 1,0), its
G-orbit has size2 and each element has scorebo&d3, 3), so hasc = 1. If the voting situation
is (0,1,2,0,0,0), then itsG-orbit has size5. There are two elements, namely, 1,2,0,0,0) and
(2,0,0,0,1,0), that have scoreboald, 4, 1), and each has= 3. The voting situatior{2, 1,0, 0,0, 0)

hasG-orbit of size6 and scoreboar(b, 2, 1), and receives the value= 6.

We shall apply Theorem 3.1 witlhequal to the indicator function of manipulability (when counting
manipulable situations), and also wijthequal to the minimum size of a manipulating coalition.

12



Note that we need only consider voting situations whose scoreboard sdtisfiesb| > |c|. Thus
our algorithm makes use of the theorem to cut the number of voting situations that must be examined,
by a factor slightly less thaf. \oting situations are generated systematically. For each situation,
we compute the scoreboard and the value above. If the scoreboard is not decreasfag= 0),
we move to the next voting situation. &f £ 0, we compute the minimum coalition size, or report
that manipulation is infeasible. This computation follows the description in Section 2.2. We consider
type Il or type | manipulations depending on whethgr= |b| or not. We need to compute only the
standard manipulations (for type I, this is manipulation makirrgwinner), and apply the appropriate
permutation to reduce others to this case.

We have implemented the algorithm in C++ (code is available from the authors on request).

4 Selected numerical results

The algorithm described in Section 3 allows us to compute, for each voting situation, whether the
situation can be manipulated by a coalition of voters, and the minimum size of such a manipulating
coalition.

To gain an overview of manipulability, we must make some assumption as to which voting situations
are the most likely to occur. We will use two of the most common models for this:

e |AC (Impartial Anonymous Culture):  all voting situations are equally likely.

¢ IC (Impartial Culture): all profiles are equally likely. Note that a voting situatien .. ., vy,)
(with a total ofn voters) represents! /(4! - - - vy,!) profiles.

The IC model can be described probabilistically: voters act independently, and each voter is equally
likely to choose any of the possible preference orders. In all but the smallest electorates, this means
(due to the law of large numbers) that most of the probability is placed on voting situations where all
candidates have roughly equal support, and the margin of victory is small. Such situations are often the
most prone to manipulation. In contrast, the IAC model places more probability on voting situations
where the margin of victory is relatively large, and manipulation may be more difficult.

With our culture model (IAC or IC) and a voting rule chosen,figtk) denote the probability that an
election involvingn voters and 3 candidates is manipulable by a coalitionaffewer voters. Previous
work on manipulation has focused mainly on the extrees 1 (manipulation by individuals) and
k = n (manipulation by any coalition); we will consider all valuesiof Thus we compute the full
probability distribution functiory,, of the random variablé/, which equals the minimal coalition size
(or oo if manipulation is not possible). We restrict to < n/2 because in every example we have
seen, increasing does not lead to any change in the probability (we do not have a formal proof of the
plausible statement that the minimum size of a manipulating coalition is always aty®)st

Tables 2 and 3 give the values ff(k) for small numbers of voters, for several positional voting
rules. Tables 4 and 5 consider manipulability in a lange=(150) population of voters.

These tables of,, (k) for smalln show that the likelihood of manipulation in small committees is
high. Furthermore we see that some rules are completely dominated by others (in the sense that for each
kandn, (k) < ga(k)).

It turns out that each < 12, there is often a single dominant rule among the six rules displayed
here. These are shown in Table 6 and Table 7. We also include extra information in these tables for
discussion in the next section.

Note that under IAC, the rule specified B3, 2, 0) is completely dominated by Borda, plurality and
the (3,1, 0) rule over the entire range < 12. Plurality also dominates th@0, 9, 0) and antiplurality
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Table 2: Manipulability of various rules for small numbers of voters, under IAC behaviour.

n |k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality
2|1 0.000000 0.428571 0.142857 0.142857 0.142857 0.428571
3|1 0.000000 0.000000 0.321429 0.321429 0.321429 0.214286
4 |1 0.214286 0.333333 0.190476 0.357143 0.357143 0.404762
2 0.214286 0.428571 0.190476 0.357143 0.357143 0.404762
511 0.214286 0.238095 0.309524 0.333333 0.261905 0.452381
2 0.214286 0.333333 0.380952 0.404762 0.285714 0.452381
6 |1 0.155844 0.227273 0.233766 0.324675 0.305195 0.305195
2 0.207792 0.305195 0.350649 0.441558 0.474026 0.305195
3 0.207792 0.344156 0.350649 0.441558 0.474026 0.305195
711 0.242424 0.219697 0.250000 0.280303 0.303030 0.393939
2 0.242424 0.310606 0.340909 0.393939 0.424242 0.484848
3 0.242424 0.363636 0.363636 0.401515 0.431818 0.484848
8 |1 0.205128 0.202797 0.223776 0.282051 0.247086 0.396270
2 0.263403 0.291375 0.340326 0.421911 0.340326 0.466200
3 0.286713 0.347319 0.386946 0.473193 0.349650 0.466200
4 0.286713 0.361305 0.386946 0.473193 0.349650 0.466200
9 |1 0.194805 0.182817 0.224775 0.236763 0.260739 0.299700
2 0.224775 0.272727 0.332667 0.359640 0.419580 0.353646
3 0.224775 0.323676 0.404595 0.410589 0.488511 0.353646
4 0.224775 0.350649 0.416583 0.422577 0.488511 0.353646
10| 1 0.209790 0.185814 0.196803 0.248751 0.251748 0.349650
2 0.257742 0.273726 0.304695 0.387612 0.395604 0.471528
3 0.281718 0.336663 0.362637 0.463536 0.457542 0.511489
4 0.293706 0.374625 0.388611 0.481518 0.461538 0.511489
5 0.293706 0.382617 0.388611 0.481518 0.461538 0.511489
111 0.200549 0.170330 0.200549 0.225275 0.221154 0.343407
2 0.250000 0.258242 0.302198 0.353022 0.335165 0.442308
3 0.266484 0.318681 0.384615 0.432692 0.380495 0.475275
4 0.266484 0.357143 0.427198 0.457418 0.385989 0.475275
5 0.266484 0.370879 0.434066 0.462912 0.385989 0.475275
12| 1 0.180349 0.160957 0.180349 0.209438 0.223497 0.276341
2 0.231739 0.247253 0.286037 0.336458 0.372818 0.356820
3 0.255495 0.307369 0.361183 0.421299 0.462993 0.383969
4 0.269069 0.351002 0.414512 0.463963 0.501778 0.383969
5 0.275856 0.374273 0.429056 0.472689 0.501778 0.383969
6 0.275856 0.379121 0.429056 0.472689 0.501778 0.383969
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Table 3: Manipulability of various rules for small numbers of voters, under IC behaviour.

n |k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality
2 |1 0.000000 0.500000 0.166667 0.166667 0.166667 0.333333
31 0.000000 0.000000 0.250000 0.250000 0.250000 0.111111
4 11 0.333333 0.472222 0.291667 0.402778 0.402778 0.296296
2 0.333333 0.555556 0.291667 0.402778 0.402778 0.296296
511 0.370370 0.339506 0.324074 0.408951 0.258488 0.375000
2 0.370370 0.416667 0.416667 0.462963 0.281636 0.375000
6 |1 0.246914 0.353652 0.331147 0.362011 0.329604 0.175412
2 0.308642 0.453961 0.423740 0.516332 0.507073 0.175412
3 0.308642 0.471965 0.423740 0.516332 0.507073 0.175412
711 0.462106 0.357082 0.336077 0.380187 0.384538 0.347951
2 0.462106 0.477109 0.471858 0.514168 0.510867 0.394762
3 0.462106 0.537873 0.503365 0.518669 0.515368 0.394762
8 |1 0.384088 0.348330 0.335002 0.368809 0.273773 0.374200
2 0.468107 0.466357 0.478134 0.546550 0.335787 0.397005
3 0.484111 0.522369 0.525145 0.610565 0.341789 0.397005
4 0.484111 0.525120 0.525145 0.610565 0.341789 0.397005
9|1 0.384088 0.327300 0.330050 0.327725 0.322297 0.204703
2 0.432099 0.468557 0.479260 0.498189 0.502649 0.214991
3 0.432099 0.549576 0.545525 0.582808 0.571465 0.214991
4 0.432099 0.578457 0.556777 0.594061 0.571465 0.214991
10| 1 0.434099 0.335768 0.324503 0.348929 0.341792 0.354003
2 0.498114 0.469403 0.479018 0.533352 0.505874 0.434432
3 0.522119 0.547713 0.570539 0.613724 0.561002 0.443863
4 0.526120 0.572677 0.597545 0.624477 0.562669 0.443863
5 0.526120 0.573327 0.597545 0.624477 0.562669 0.443863
111 0.418585 0.328479 0.317480 0.331406 0.268390 0.362999
2 0.535945 0.481467 0.471247 0.528225 0.357605 0.406740
3 0.554282 0.566568 0.574720 0.634460 0.375834 0.411521
4 0.554282 0.613192 0.613168 0.673160 0.377323 0.411521
5 0.554282 0.624003 0.616720 0.676140 0.377323 0.411521
121 0.399025 0.307993 0.310184 0.300434 0.299059 0.218128
2 0.465040 0.461212 0.464178 0.472296 0.478058 0.240433
3 0.489490 0.551249 0.579748 0.589853 0.575725 0.242694
4 0.496825 0.598379 0.632886 0.640546 0.603008 0.242694
5 0.497803 0.614579 0.644148 0.650861 0.603008 0.242694
6 0.497803 0.614724 0.644148 0.650861 0.603008 0.242694

Table 4: Manipulability of various rules for a large number (150) of voters, under IAC behaviour.

n | k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality

150 | 1 0.028768 0.019740 0.020304 0.024294 0.027861 0.041790
10 0.156653 0.141459 0.137456 0.184919 0.232361 0.248109
20 0.231809 0.240621 0.253923 0.329686 0.390713 0.395509
50 0.289056 0.402909 0.474906 0.531345 0.536958 0.504149
00 0.291722 0.425031 0.496558 0.537954 0.537175 0.504149
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Table 5: Manipulability of various rules for a large number (150) of voters, under IC behaviour.

n | k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality
150| 1 0.167757 0.108331 0.100657 0.105540 0.108635 0.140902
10 0.819020 0.695129 0.590518 0.641616 0.570225 0.407870
20 0.975120 0.937504 0.874442 0.894358 0.729099 0.413466
50 0.981641 0.994959 0.996119 0.994388 0.830657 0.413468
00 0.981641 0.994975 0.996128 0.994389 0.830657 0.413468
Table 6: Best rules forn < 12, by various measures, under IAC
Number of voters| 2 3 4 5 6 7 8 9 10 11 12
Dominant rule | plur | plur | Borda | plur | plur | none none none none none none
Pr(M =1) least | plur | plur | Borda | plur | plur | (3,1,0) | (3,1,0) | (3,1,0) | (3,1,0) | (3,1,0) | (3,1,0)
Pr(M < oo) least| plur | plur | Borda | plur | plur | plur plur plur plur plur plur

over this range. It seems that under IAC, the “easy” case rules are much superior to the “hard” ones.
The reverse is true (to a less extent) under IC however6fer n < 12, plurality is dominated by

antiplurality. However, note that again thi 2, 0) rule is uncompetitive, being dominated by Borda for
n < 11, and by at least one other “easy case” rule for eagh12.
We now move on to larger values of In Figure 4 we ploPr(M < oo) for n < 50. In Figure 4,
we graphf, (k) againstk for n = 48, n = 49, n = 50. The mod-3 periodicity evident for smalleris
still very clear for the hard case rules but not in the easy case. Integer effects are more important in the
hard case, as we saw in Section 2.3.

5 Comparison with the existing literature

The present article is the first to provide exact (computational) results for positional rules other than

the standard three (plurality, Borda, antiplurality). Very few authors have considered quantitative mea-
sures of manipulability for a general positional rule. Furthermore our random tiebreaking has not been

commonly used. Thus, though we believe our approach to be superior to those undertaken by previous
authors, direct comparison with existing results is not easy. Below we discuss a few cases in which such
comparison can be profitably made. We discuss both results and methodology.
Previous authors have usually considered one or more rules, which need not be positional; the
positional rules chosen have been limited to plurality, Borda, and antiplurality. Furthermore, they

e use various definitions of manipulability;

e consider various measures of manipulability;

e give statistical results for these measures that are either

Table 7: Best rules forn < 12, by various measures, under IC

Number of voters| 2 3 4 5 6 7 8 9 10 11 12
Dominantrule | plur | plur | Borda| (10,9,0) | antip| none | (10,9,0) | antip| none | (10,9,0) | antip

Pr(M =1) least | plur | plur | Borda | (10,9,0) | antip | Borda | (10,9,0) | antip | Borda | (10,9,0) | antip

Pr(M < oo) least| plur | plur | Borda| (10,9,0) | antip | antip | (10,9,0) | antip | antip | (10,9,0) | antip
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Figure 3: Probability of the occurrence of a manipulable situation, as a function of the number of voters
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Figure 4: Manipulability by coalitions of various sizes, for 48, 49, or 50 voters
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asymptotic (as the number of voters tendsdy

exact analytic (given by a formula for finite;

exact computational (derived by an algorithm, as in the present article);

based on random sampling;

e consider various probability distributions on voter preferences (of which the Impartial Culture and
Impartial Anonymous Culture models are the most common by far).

We discuss each of these issues except the last in more detail below. Results for the three standard
positional rules (and other non-paositional rules) for more general preference models are presented in
[11]. In [2] a so-called spatial model of voting is used. Apart from these, to our knowledge all papers
have dealt with IC or IAC only, and we confine our discussion to these cases.

5.1 Definitions of manipulability

Various definitions of manipulability are used in the literature (and we discuss them below). Small
differences in such definitions, and issues such as tiebreaking, will not affect our results substantially
when the numben of voters is large, although tiebreaking does affect numerical results for amall
Most previous authors have used lexicographical tiebreaking.

There are two main distinctions to make. First, there is individual manipulation (in other words, by
a coalition of sizel) versus more general coalitional manipulation. Individual manipulation only was
studied in earlier papers while recently coalitional manipulation has been more studied. Second, there is
a big difference between naive manipulation (when the manipulating voters ignore any possible game-
playing by other voters) and the more sophisticated type of manipulation that allows for the possibility
of reversals or counterthreats. The only quantitative works on manipulability in the latter case of which
we are aware are [10, 3], which also consider naive manipulation; all others (including ourselves) use
only the naive concept.

Some authors (for example Saari [14]) have studied a different concept under the name of manipu-
lation, which we do not consider to be a valid manipulation in general. Namely, one can consider the
easier problem of promotingahead of:, without worrying that may thereby overtakie This is called
threshold manipulabilityin [13] and is simpler to analyse.

Technically, our random tiebreaking does not specify a voting rule. A rule is cadkaluteif it
always produces a unique winner from each voting situation. Ties can be handled by considering non-
resolute rules. In [20] several different definitions of manipulation of non-resolute rules are presented.
It is not at all clear to us which, if any, of these definitions coincides with our definition.

5.2 Measures of manipulability

Several measures or indices of manipulability are used in [7, 1, 19, 2], all of which deal only with IC and
use random sampling (the first three cited articles deal only with individual manipulation). These include
such measures as the number of candidates in whose favour manipulation is possible, the “margin of
error” of an attempted manipulation, and the number of voters who can individually manipulate. All
these measures can be computed in a straightforward way by modifying our program; however we have
not implemented these additional capabilities.

To our knowledge all other papers fit into the following framework. Léte the minimal size of
a manipulating coalition. Early papers considered the probafiilitp/ = 1); that is, they considered
only manipulability by a single voter. Later papers have considered the logical possibility of coalitional
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Table 8: Probabilities of manipulability under IAC

Rule lim, Pr(M < oo0) | exactformula? Pr(M =1) | exactformula?
Positional 0<c<l1 no O(n=1) [18] no
Plurality | 7/24 ~ 0.2917 [8] yes [8] ~ (55/18)n~! yes [10]

Borda ~ 0.5025 [4] no ~ (25/12)n~ " yes [4]

Antiplurality | 14/27 ~ 0.5185 yes [6] ? ?

Table 9: Probabilities of manipulability under IC

Rule Pr(M < o0) | exactformula? Pr(M =1) | exactformula?
Positional | — 1 exp. fast no O(n~1/2)[17] no
Plurality —1 ? ? ?

Borda —1 ? ? ?

Antiplurality —1/2 ? ? ?

manipulation; that isPr(M < oo). In [2] the average minimum coalition size (conditional on manipu-
lation being possible, that i€[M | M < oo]) was studied. The average threshold coalition size was
discussed in [13].

Our analysis in the present article yields the full probability distribution of the minimum coalition
size, since we can compulx (M < k) for eachk. Thus we can readily compute any of the above
statistics if desired.

5.3 Statistical results

We summarize some known results in Table 8 and Table 9. A guestion mark “?” means that we do not
know whether the relevant entry is known; by “exact formula” we mean a formula for finite

Exact results are found in a few papers. Results obtained by random sampling under IC are presented
in[12, 19, 1]. The latter two articles cover Borda and plurality. Several papers [8, 10, 9, 11, 4, 3] present
exact analytic and computational results for IAC, for the three standard positional rules.

We first considePr(M = 1). The results of the above-mentioned papers sometimes vary substan-
tially from ours. In [19], for Borda and = 11 the value).2321 is given, whereas we obtalin3175; for
n = 50 the corresponding values abel 159 and0.1701. However, it is easily seen that the probability
of manipulability under our random tiebreaking assumption will always exceed that computed under the
assumption of lexicographic tiebreaking, so these results are consistent.

Under IC, for every positional rule except antipluraliB;(M < oo) approached exponentially
fast asn — oo, while it approached /2 in the case of antiplurality. This convergence is certainly
consistent with Table 5. When = 21, the paper [2] give®r(M < oo) as0.810 for plurality and
0.960 for Borda, whereas we obtain640 and0.780 respectively. We do not have an explanation for
this discrepancy; it is certainly true that our tiebreaking assumptions are not exactly the same.

By contrast, under IAC®r(M < oco) converges to a constant betweeand1. These constants do
not depend on the tie-breaking rules, since the set of tied situations has asymptotic negligible probability.
Our results agree well with these limits for(M < oo). For example, whem = 150 we have
0.2917,0.4966, 0.5041 for plurality, Borda, antiplurality respectively. Note that convergence for the
latter is slower, as may be expected.

The other statistic that has been usefj3/|M < o], the expected minimum size of a manipulat-
ing coalition. This was introduced in [2]. The numerical results presented there are not easily verified,
because a slightly different measure is computed. See Section 6 for more discussion of this measure.
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6 Extensions and future work

There are many areas for further study, and we now list some.

e One obvious area is to understand better the type Ill manipulations. Here we derive the appropriate
linear system and record it for possible future use. Consider Case 2(iv). The coalition members
must preferto b, sowe haver; = 3 = x4 = 0. Letyy, y2, 3, ¥4, Y5, andys denote the numbers
of coalition members who strategically vaiéc, ach, bac, bea, cab, andcba respectively. The
conditions to be satisfied are then derived as above:

0= [b] — |e| + war2 + w1225 + Wi3xe + WisY1 + Wiy + Wasy3 + W32y + W21Ys + W31Ye
(IP:llic)

0 < le| — |b] + w3az2 + w3175 + Wa1T6 + W32y1 + W23Y2 + W31Y3 + W21Y4 + W13Y5 + W12Y6
O=z2+25+%6 — Y1 — Y2 — Y3 —Ya— Y5 — Yo
0<z; <y for1<i<6
0<y;forl<;j<6
all z;, y; are integers

Case 2(v) can be obtained from 2(iv) by transposirandb.

e The measur®r(M < oo) can of course be computed for a giverby our methods, since it is
just the maximum value of,, (k). If a more analytic result is required, we can easily derive one
by specializing our linear systems. Explicitly, for each case listed in Table 1, theraasianal
coalition consisting of all voters with incentive to participate in a coalition. Since some of these
can still vote sincerely if they so desire, it follows that a situation is manipulable if and only if
it is manipulable by the appropriate maximal coalition. Algebraically, this means thatslie
systems such as (IP: Ib) are replaced by the corresponding/NVe can also express the scores
in terms of the’s by (1). This yields integer linear conditions in ths andy’s only, which are
necessary and sufficient for manipulation to be achievable. The problem now reduces to one of
counting lattice points inside a convex region, to which standard techniques can be applied.

Some such conditions have been derived in various special cases by previous authors. One could
attempt to perform such a computation for a general positional rule.

e The results for smaik immediately suggest conjectures about asymptotic behaviour of rules. For
example,

— plurality asymptotically minimize®r(M < o) for IAC;

— some easy case rule other than plurality or Borda minimizg¢d/ = 1) asymptotically
under IAC;

— Borda is the rule for whicPr(M < oo) converges fastest to 1 under IC.

e The measureBr(M = 1) andPr(M < oo) are the most commonly used in the literature. The
measurel[M|M < oo] was introduced in [2]. In [13] several results were derived for a general
positional rule under IC. It was shown that this measure is asymptotically eqtd%\aptbzl/Q
whereC depends op := (w; — we)/(w1 — w3). Furthermore, for easy case rulesX 1/2), C
behaves continuously im But for the hard case, even thougH0) is a finite constant, there is a
discontinuity ofC' atp = 0: lim,_.o C'(p) = oo. Thus the closer a rule approaches antiplurality,
the larger isE[M | M < oo]. Hence this measure is probably not all that useful, assuming IC.
However, under IAC we expect the measure to be of ongand it may be of more use.
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¢ We note that for many non-positional voting rules we can use the same methodology of deriving
linear systems to describe manipulability. Similarly, the type of linear systems derived here also
occur in other areas of voting theory.

References

[1] Fuad T. Aleskerov and Eldaniz Kurbanov. A degree of manipulability of known social choice
procedures. In Ahmet Alkan, Charalambos Aliprantis, and Nicholas Yannelis, editorsnt
Trends in Economics: Theory and Applicatippages 13-27. Springer, 1999.

[2] John R. Chamberlin. An investigation into the relative manipulability of four voting systems.
Behavioral Sci.30(4):195-203, 1985.

[3] Pierre Favardin and Dominique Lepelley. Some further results on the manipulability of social
choice rules. page 28pp, 2004.

[4] Pierre Favardin, Dominique Lepelley, angi@me Serais. Borda rule, Copeland method and strate-
gic manipulation.Rev. Econ. Desigry:213-228, 2002.

[5] Allan Gibbard. Manipulation of voting schemes: a general resitonometrica41:587-601,
1973.

[6] H. C. Huang and Vincent C. H. Chua. Analytical representation of probabilities under the IAC
condition. Soc. Choice Welf17(1):143-155, 2000.

[7] Jerry S. Kelly. Almost all social choice rules are highly manipulable, but a few atgad. Choice
Welf, 10(2):161-175, 1993.

[8] Dominique Lepelley and Boniface Mbih. The proportion of coalitionally unstable situations under
the plurality rule.Econom. Let.24(4):311-315, 1987.

[9] Dominique Lepelley and Boniface Mbih. The vulnerability of four social choice functions to
coalitional manipulation of preferenceSoc. Choice Welf11(3):253-265, 1994.

[10] Dominique Lepelley and Boniface Mbih. Strategic manipulation in committees using the plurality
rule: alternative concepts and frequency calculatigBaup Decision and Negotiatioi:21-41,
1999.

[11] Dominique Lepelley and Fabrice Valognes. Voting rules, manipulability and social homogeneity.
Public Choice 116:165-184, 2003.

[12] Shmuel Nitzan. The vulnerability of point-voting schemes to preference variation and strategic
manipulation.Public Choicg 47:349-370, 1985.

[13] Geoffrey Pritchard and Arkadii Slinko. On the average minimum size of a manipulating coalition.
Soc. Choice Welfto appear.

[14] Donald G. Saari. Susceptibility to manipulatidPublic Choice 64:21-41, 1990.

[15] Mark Allen Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functioBsonom. Theory10(2):187—
217, 1975.

22



[16] Alexander SchrijverTheory of linear and integer programmin@iley-Interscience Series in Dis-
crete Mathematics. John Wiley & Sons Ltd., Chichester, 1986. A Wiley-Interscience Publication.

[17] Arkadii Slinko. On asymptotic strategy-proofness of classical social choice rdleeory and
Decision 52(4):389-398, 2002.

[18] Arkadii Slinko. How the size of a coalition affects its chances to influence an ele&am.Choice
Welf, to appear.

[19] David A. Smith. Manipulability measures of common social choice functi@uk. Choice Welf.
16(4):639-661, 1999.

[20] Alan D. Taylor. Social choice and the mathematics of manipulati@utlooks. Cambridge Uni-
versity Press, Cambridge, 2005.

23



