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Abstract

Motivated by Mermin’s analysis of Einstein-Podolsky-Rosen correlations [25] and
[6] we study two computational complementarity principles introduced in [7] for a
class of probabilistic automata. We prove the existence of probabilistic automata
featuring both types of computational complementarity and we present a method
to reduce, under certain conditions, the study of computational complementarity of
probabilistic automata to the study of computational complementarity of determin-
istic automata.

1 Introduction

Quantum entanglement [33] and nonlocal correlations [1, 16] are essential features of
quantized systems used for quantum computation [13]. Building on Moore’s “Gedanken”
experiments, in [34, 31] complementarity was modeled by means of finite automata. Two
new type of computational complementarity principles have been introduced and studied
in [7, 11, 12, 10, 37, 36] using Moore automata without initial states. Motivated by Mer-
min’s simple device [25] designed to explain Einstein-Podolsky-Rosen (EPR) correlations
and the analysis in [6], we study the above mentioned computational complementarity
properties for a class of probabilistic automata. We prove the existence of probabilis-
tic automata featuring both types of computational complementarity and we reduce
the study of computational complementarity of probabilistic automata to the study of
computational complementarity of deterministic automata.

2 Mermin’s Device

Mermin [25] imagined a simple device to illustrate the EPR conundrum without using
the classical quantum mechanical notions of wave functions, superposition, wave-particle
duality, uncertainty principle, etc. The device has three “completely unconnected”1

parts, two detectors (D1) and (D2) and a source (S) emitting particles. The source is
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placed between the detectors: whenever a button is pushed on (S), shortly thereafter two
particles emerge, moving off toward detectors (D1) and (D2). Each detector has a switch
that can be set in one of three possible positions–labeled 1,2,3–and a bulb that can flash
a red (R) or a green (G) light. The purpose of lights is to “communicate” information
to the observer. Each detector flashes either red or green whenever a particle reaches it.
Because of the lack of any relevant connections between any parts of the device, the link
between the emission of particles by (S), i.e., as a result of pressing a button, and the
subsequent flashing of detectors can only be provided by the passage of particles from
(S) to (D1) and (D2). Additional tools can be used to check and confirm the lack of any
communication, cf. [25], p. 941.

The device is repeatedly operated as follows:

1. the switch of either detector (D1) and (D2) is set randomly to 1 or 2 or 3, i.e., the
settings or states 11, 12, 13, 21, 22, 23, 31, 32, 33 are equally likely,

2. pushing a button on (S) determines the emission toward both (D1) and (D2),

3. sometime later, (D1) and (D2) flash one of their lights, G or R,

4. every run is recorded in the form ijXY , meaning that D1 was set to state i and
flashed X and (D2) was set to j and flashed Y.

For example, the record 31GR means “(D1) was set to 3 and flashed G and (D2) was
set to 1 and flashed R”.

Long recorded runs show the following pattern:

a) In records starting with ii, i.e., 11, 22, 33, both (D1) and (D2) flash the same
colours, RR,GG, with equal frequency; RG and GR are never flashed.

b) In records starting with ij, i 6= j, i.e., 12, 13, 21, 23, 31, 32, both (D1) and (D2) flash
the same colour only 1/4 of the time (RR and GG come with equal frequencies);
the other 3/4 of the time, they flash different colours (RG,GR), occurring again
with equal frequencies.

The above patterns are statistical, that is they are subject to usual fluctuations ex-
pected in every statistical prediction: patterns are more and more “visible” as the number
of runs becomes larger and larger.

The conundrum posed by the existence of Mermin’s device reveals as soon as we
notice that the seemingly simplest physical explanation of the pattern a) is incompatible
with pattern b). Indeed, as (D1) and (D2) are unconnected there is no way for one
detector to “know”, at any time, the state of the other detector or which colour the
other is flashing. Consequently, it seems plausible to assume that the colour flashed by
detectors is determined only by some property, or group of properties, of particles, say
speed, size, shape, etc. What properties determine the colour does not really matter; only
the fact that each particle carries a “program” which determines which colour a detector
will flash in some state is important. So, we are led to the following two hypotheses:
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H1 Particles are classified into eight categories:

GGG,GGR,GRG,GRR,RGG,RGR,RRG,RRR.2

H2 Two particles produced in a given run carry identical programs.

According to H1–H2, if particles produced in a run are of type RGR, then both de-
tectors will flash R in states 1 and 3; they will flash G if both are in state 2. Detectors
flash the same colours when being in the same states because particles carry the same
programs.

It is clear that from H1–H2 it follows that programs carried by particles do not depend
in any way on the specific states of detectors: they are properties of particles not of de-
tectors. Consequently, both particles carry the same program whether or not detectors
(D1) and (D2) are in the same states.3

One can easily argue that

[L] For each type of particle, in runs of type b) both detectors flash the same colour at
least one third of the time.

The conundrum reveals as a significant difference appears between the data dictated
by particle programs (colours agree at least one third of the time) and the quantum
mechanical prediction (colours agree only one fourth of the time):

under H1–H2, the observed pattern b) is incompatible with [L].

3 Mermin’s Probabilistic Automata

Consider now a probabilistic automaton simulating Mermin’s device. The states
of the automaton are all combinations of states of detectors (D1) and (D2), Q =
{11, 12, 13, 21, 22, 23, 31, 32, 33}, the input alphabet models the lights red and green,
Σ = {G,R}, the output alphabet captures all combinations of lights flashed by (D1)
and (D2), O = {GG,GR,RG,RR}, and the output function f : Q → O, modeling all
combinations of green/red lights flashed by (D1) and (D2) in all their possible states, is
probabilistically defined by:

f(ii) = XX, with probability 1/2, for i = 1, 2, 3,X ∈ {G,R},

f(ii) = XY, with probability 0, for i = 1, 2, 3,X, Y ∈ {G,R},X 6= Y,

f(ij) = XX, with probability 1/8, for i, j = 1, 2, 3, i 6= j,X ∈ {G,R},

f(ij) = XY, with probability 3/8, for i, j = 1, 2, 3, i 6= j,X, Y ∈ {G,R},X 6= Y.

2A particle of type XY Z will cause a detector in state 1 to flash X; a detector in state 2 will flash Y
and a detector in state 3 will flash Z.

3The emitting source (S) has no knowledge about the states of (D1) and (D2) and there is no com-
munication among any parts of the device.
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For example, f(11) = RR with probability 1/2, f(11) = GR with probability 0,
f(11) = RG with probability 0, f(11) = RR with probability 1/2, f(12) = GG with
probability 1/8, f(12) = GR with probability 3/8, f(12) = RG with probability 3/8,
f(12) = RR with probability 1/8, etc.

The automaton transition δ : Q×Σ→ Q is not specified. In fact, varying all transition
functions δ we get a class of Mermin automata:

M = (Q,Σ, O, δ, (pXYij , i, j = 1, 2, 3,X, Y ∈ {G,R})),

where pXYij is the probability that the automaton on state ij outputs XY : pXXii =

1/2, pXYii = 0, X 6= Y, pXXij = 1/8, pXYij = 3/8, X 6= Y .

4 Computational Complementarity for Deterministic Au-
tomata

Moore [26] has studied some experiments on finite deterministic automata4 trying to un-
derstand what kind of conclusions about the internal conditions of a finite machine could
possibly be drawn from input-output experiments. A (simple) Moore experiment can be
described as follows: a copy of the machine will be experimentally observed, i.e., the ex-
perimenter will input a finite sequence of input symbols to the machine and will observe
the sequence of output symbols. The correspondence between input and output symbols
depends on the particular chosen machine and on its initial state. The experimenter
will study the sequences of input and output symbols and will try to conclude that “the
machine being experimented on was in state q at the beginning of the experiment”.

A state p is “indistinguishable” from a state q (with respect to a given automaton)
if every experiment performed on the automaton starting in state p produces the same
outcome as it would starting in state q.

Moore [26] has proven the following important result: There exists an automaton such
that any pair of its distinct states are distinguishable, but there is no experiment which can
determine what state the machine was in at the beginning of the experiment. In Calude,
Calude, Svozil and Yu [7] two non-equivalent concepts of computational complementarity
were introduced and studied for finite automata. Informally, they can be expressed as
follows. Consider the class of all elements of reality (observables) and the following
properties:

A Any two distinct elements of reality can be mutually distinguished by a suitably
chosen measurement procedure, see Bridgman [4].

B For any element of reality, there exists a measurement which distinguishes between
this element and all the others. That is, a distinction between any one of them and
all the others is operational.

C There exists a measurement which distinguishes between any two elements of re-
ality. That is, a single pre-defined experiment operationally exists to distinguish
between an arbitrary pair of elements of reality.

Clearly, C implies B and B implies A, but both converse implications fail to be true;
consequently, two principles of complementarity emerge:

4See Brauer [3], Hopcroft and Ullman [22] for good introductions into automata theory.
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CI Property A but not property B (and therefore not C): The elements of reality can
be mutually distinguished by experiments, but one of these elements cannot be
distinguished from all the other ones by any single experiment.

CII Property B but not property C: Any element of reality can be distinguished from all
the other ones by a single experiment, but there does not exist a single experiment
which distinguishes between any pair of distinct elements.

We may regard CI as an “uncertainty principle” (cf. Conway [14, p. 21]), later
termed “computational complementarity” by Finkelstein and Finkelstein [18].5

In CII each experiment “generates” a pair of distinct states which exercise a mu-
tual influence, namely, they cannot be separated into proper independent parts by the
experiment; this influence mimics, in a sense, the state of quantum entanglement.6 We
may be conceive CII as a toy model for the EPR effect (see [17, 28, 29]), as well as for
the Zou-Wang-Mandel effect [40, 38, 19]. Under CII , for each experiment w we have
at least two states q, q′ (as distant as we like in terms of the emitting outputs) which
interact via the experiment w: any measurement of q is affecting q′ and, conversely, any
measurement of q′ is affecting q.

5 Computational Complementarity for Probabilistic Au-
tomata

Motivated by Mermin’s automaton probabilistic automaton analysis in [6] we introduce
and study computational complementarity for a class of probabilistic automata. In op-
position with a more popular model, in which the transition is stochastic, but the output
is deterministic (see [27]), here we will work with automata having deterministic tran-
sitions but stochastic outputs. So, our probabilistic finite automata consist of a finite
set of input symbols (the alphabet), a finite set of states, a finite set of outputs, a set
of transitions from state to state that occur on input symbols chosen from the alphabet
and an output probabilistic function. For each symbol there is exactly one transition out
of each state, possible back to the state itself. The output function emits an output with
some probability.

Formally, a finite probabilistic automaton A = (Q,Σ, O, δ, (ap,o)p∈Q,o∈O) consists of
an input alphabet Σ, a finite set Q of states, an output finite set O, a transition function
δ : Q × Σ → Q and an output probabilistic function f : Q → O given by the matrix
(ap,o)p∈Q,o∈O satisfying the condition

∑
o∈O ap,o = 1, for every p ∈ Q. The output emitted

by A on p is f(p) = o with probability ap,o. In case of a deterministic finite automaton,
for every p ∈ Q, there exist one (unique) output o ∈ O such that ap,o = 1 and all other
probabilities are 0; that is, f(p) = o. As in case of deterministic automata the transition
function extends naturally to Q×Σ∗ → Q satisfying the equation δ(p, uv) = δ(δ(p, u), v),
for all p ∈ Q,u, v ∈ Σ∗.7

5These type of models have been intensively studied from the point of view of their experimental
logical structure by Grib and Zapatrin [20, 21], Svozil [34], Schaller and Svozil [30, 31, 32], Dvurečenskij,
Pulmannová and Svozil [15], Calude and Lipponen [8], Calude, Calude and Ştefănescu [9], Jurvanen, and
Lipponen [24]. See Svozil and Zapatrin [35] for a comparison of models.

6In particular, this influence cannot be used to send an actual message from a state to the other.
7In what follows the extension will also be denoted by δ.
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Consider, for example, the automaton consisting of Q = {1, 2, 3, 4}, Σ = {0, 1},
O = {G,R}, the transition given by the following tables

q σ δ(q, σ)

1 0 4
1 1 3
2 0 1
2 1 3

q σ δ(q, σ)

3 0 4
3 1 4
4 0 2
4 1 2

and the output function defined by

f(1) = G, with probability 2/3,
f(1) = R, with probability 1/3,
f(2) = G, with probability 1/3,
f(2) = R, with probability 2/3,

f(3) = G, with probability 1/3,
f(3) = R, with probability 2/3,
f(4) = G, with probability 1/3,
f(4) = R, with probability 2/3.

The following graphical representation will be consistently used in what follows:
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Figure 1.

The response of the automaton on state p to the “experiment” x = x1x2 · · ·xn ∈ Σ∗

is defined by a concatenation of random variables:

ResA(p, x1x2 · · · xn) = f(p)f(δ(p, x1)) · · · f(δ(p, x1x2 · · · xn)).

For example, considering the automaton in Figure 1, the experiment starting in state
1 with input sequence 000100010 leads to the response:

ResA(1, 000100010) = f(1)f(4)f(2)f(1)f(3)f(4)f(2)f(1)f(3)f(4).

The response is ResA(1, 000100010) = GRGGGRGGGR with probability ·23 =
26 · 3−10; ResA(1, 000100010) = GGGGGGGGGG with probability 8 · 3−10, a.s.o.
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Let α ∈ [1/2, 1]. We say that a state p is distinguishable from the state q with
confidence α if there exists an experiment x = x1x2 · · ·xn ∈ Σ∗ such that at least
one probability that f(p) 6= f(q), f(δ(p, x1x2 · · ·xi)) 6= f(δ(q, x1x2 · · ·xi)), 1leqileqn is
greater or equal to α.

This means that at least on one point, during the “measurement” process of the
responses of the automaton to the experiment x, the probability that the response of A
on p and x is different (within the fixed level of confidence) to the response of A on q

and x.8

For the automaton in Figure 1 we have:

ResA(1, 001) = f(1)f(4)f(2)f(3),
ResA(2, 001) = f(2)f(1)f(4)f(2),

ResA(3, 001) = f(3)f(4)f(2)f(3),
ResA(4, 001) = f(4)f(2)f(1)f(3),

and the probability that f(1) 6= f(i) is 5/9 for i = 2, 3, 4. So, with confidence 5/9 the
experiment 001 distinguishes between every pair of distinct states.

We are now in a position to define properties A, B, C for a probabilistic automaton
and a level of confidence α (α ∈ [1/2, 1]).

• A probabilistic automaton has property A with level of confidence α if every pair
of different states is distinguishable with confidence α.

• A probabilistic automaton has B with level of confidence α if every state is distin-
guishable with confidence α from any other distinct state.

• A probabilistic automaton has C with level of confidence α if there exists an ex-
periment distinguishing with confidence α between each different states.

For example, the automaton in Figure 1 has C. Here are two examples of probabilistic
automata having respectively A but not B and B but not C, i.e, CI, CII.

For CI we keep all components of the automaton in Figure 1 but modify the output
function (see Figure 2):
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8The motivation is the following. For a deterministic automaton B, two states p, q are distinguishable if
ResB(p, x1 . . . xn) 6= ResB(q, x1 . . . xn), for some experiment x1 . . . xn (see [7]), that is, for the correspond-
ing transition and output functions, f(p) 6= f(q) or f(δ(p, x1x2 · · ·xi)) 6= f(δ(q, x1x2 · · ·xi)), 1leqileqn.
In the probabilistic case we just replace the above conditions with the corresponding probabilistic ones.
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Figure 2.

With confidence 5/9 the probabilistic automaton in Figure 2 has CI. Indeed, us-
ing the experiments 1, 10 and 010 we can distinguish with confidence 5/9 between
every two distinct states (0 distinguishes between (1,2), (1,4), (2,3), 1 distinguishes
between (1,3), 10 distinguishes between (2,4) and 010 distinguishes between (3,4)),
but no experiment starting with 1 distinguishes with confidence 5/9 between states 1
and 2, and no experiment starting with 0 distinguishes between the states 1 and 3
(δ(1, 1x) = δ(2, 1x) = δ(3, x), δ(1, 0y) = δ(3, 0y) = δ(4, y)).

The probabilistic automaton in Figure 3 has CII with confidence 5/9:
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Figure 3.

Indeed, the following pairs of states are distinguishable with confidence 5/9 by every
experiment: (1, 2), (1, 4), (2, 3), (3, 4). Accordingly, with confidence 5/9, 1 is distinguish-
able from the other states by 0, 2 is distinguishable by 1, 3 is distinguishable by 0, and
4 is distinguishable by 1, so the probabilistic automaton has property B with confidence
5/9. It does not have property C with confidence 5/9 because:

• any experiment which starts with 1, i.e. 1x, x ∈ Σ∗, does not distinguish with
confidence 5/9 between 1 and 3;

• any experiment which starts with 0, i.e. 0y, y ∈ Σ∗, does not distinguish with
confidence 5/9 between 2 and 4.

6 More About Mermin’s Probabilistic Automata

We now argue that with confidence 1/2, for every transition function δ, the corresponding
Mermin probabilistic automaton has C. Indeed,

• for every i 6= j, the probability that f(ii) 6= f(jj) = 1/2,

• for every j 6= k, the probability that f(ii) 6= f(jk) = 7/8,
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• for every i 6= j, k 6= l, ij 6= kl, the probability that f(ij) 6= f(kl) = 11/16.

As all probabilities calculated above are greater than 1/2, it follows that with confi-
dence 1/2, every Mermin automaton has C.

7 Decidability Questions

With techniques similar to those in Calude, Calude, Svozil, Yu [7] one can show that
properties A, B, C, CI, CII are decidable for every probabilistic automaton. Comple-
mentarity properties CI, CII cannot appear for probabilistic automata with less than
four states.

One way to check these properties, with some approximation, is by “simulating” a
probabilistic automaton with a deterministic automaton (with some level of confidence).
Let A = (Q,Σ, O, δ, (ap,o)p∈Q,o∈O) be a probabilistic automaton, and α ∈ [1/2, 1] a
confidence level. We construct a deterministic automaton A′ = (Q,Σ, O′, δ, f ′), where
f : Q → O′ is the output function satisfying the following constraints: for every pair
of distinct states p, q, if the probability that f(p) 6= f(q) is greater or equal to α, then
f ′(p) 6= f ′(q); otherwise, f ′(p) = f ′(q).

Note that the above construction cannot be carried on in all cases. For example,
consider the probabilistic automaton A = (Q,Σ, O, δ, (ap,o)p∈Q,o∈O) where Q = {p, q, r},
O = {G,R}, and the output probabilities are ap,G = 1, ap,R = 0, aq,G = 0, aq,R =
1, ar,G = ar,R = 1/4 (Σ, δ are arbitrary). It is easy to see that no deterministic automa-
ton A′ simulates A, for every α ≥ 1/2. Reason: f ′(p) 6= f ′(q), but f ′(p) = f ′(q) = f ′(r).
However, this phenomenon cannot appear for all α ∈ [1/2, 1].

If the simulation is possible at the level of confidence α, then every pair of distinct
states p, q ∈ Q are distinguishable by an experiment applied to A if and only if they are
distinguishable by the same experiment applied to A′. Consequently, the probabilistic
automaton A has A (B,C) if and only if A′ has A (B, C, respectively).

For example, every Mermin probabilistic automaton is simulated with confidence
α ≤ 11/16 ≈ 68.7% by the automaton having the same components as every Mermin
automaton and the output function f ′(11) = f ′(22) = f ′(33) = 0, f ′(12) = f ′(13) =
f ′(21) = f ′(23) = f ′(31) = f ′(32) = 1. Modifying the output function to f ′(11) =
f ′(22) = f ′(33) = 0, f ′(12) = 1, f ′(13) = 2, f ′(21) = 3, f ′(23) = 4, f ′(31) = 5, f ′(32) = 6
we get a simulation with confidence α ≤ 7/8 ≈ 87.5%. An analysis of properties C, CI
and CII for these automata can be found in [5].9

If A has only two output states, say {G,R}, and α > 1/2, then O′ needs no more
than two states. Indeed, O′ needs more than two states if there are three distinct states
p, q, s ∈ Q such that

the probability that f(x) 6= f(y) is greater or equal to α, (1)

9Due to the large number of transitions, i.e., 918 ≈ 150·1015 , an exhaustive search was computationally
not feasible; instead, simulation techniques were used.
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for all distinct x, y ∈ {p, q, s}. Assume that the probability that f(x) = G is ax,G,
x ∈ {p, q, s}. Then, condition (1) can be written as

ax,G(1− ay,G) + ay,G(1− ax,G) ≥ α,

or
(ax,G − α)(α − ay,G) ≥ 2α − 1.

We arrive to a system of three inequalities which has no solution for α > 1/2. The
system has an infinity of solutions for α = 1/2. For example, to simulate the probabilistic
automaton A = (Q,Σ, O, δ, (ap,o)p∈Q,o∈O) where Q = {1, 2, 3}, Σ, δ are arbitrary, O =
{G,R} and f(1) = G with probability 1, and f(2) = f(3) = G with probability 1/2, we
need a deterministic automaton with three outputs.
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