88868888

CDMTCS
Research
Report
Series

Unstable Dynamics on a
Markov Background and
Stability in Average

Alexander M. Krageloh
Department of Mathematics
University of Auckland

CDMTCS-097
March 1999

Centre for Discrete Mathematics and
Theoretical Computer Science



UNSTABLE DYNAMICS ON A MARKOV BACKGROUND
AND STABILITY IN AVERAGE

Alexander Marc Krageloh



Abstract

Dynamical systems which switch between several different branches or modes of evo-
lution via a Markov process are simple mathematical models for irreversible systems. The
averaged evolution for such a dynamics can be obtained by a compression of the corre-
sponding reversible dynamics onto a coinvariant subspace in the sense of the Lax/Phillips
Scattering Scheme.

If the dynamics switches between some stable modes of evolution and some unstable
modes, still the averaged or expectation evolution might be stable. From the theory
of random evolutions the generator A of the averaged evolution is obtained, and a
definition of stability in average is suggested. With regard to this context the generator
A is investigated and conditions for stability in average are given for certain special
situations. Based on these results, a conjecture is made about sufficient and necessary
conditions for stability in average for some more general cases.

In order to find hints how to verify or how to modify the conjecture three qualitatively
different solvable models are studied. Here the spectral properties of the generators of
all three models are studied, and the results are put in relation to the conjecture.
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Chapter 1

Introduction

In the paper “Quantum dynamics on a Markov background“ by B.S. Pavlov ([28])
a certain class of dynamical systems was constructed which has the property of being
irreversible. It was assumed that the generator of the evolution depends on time
via a continuous time n-state Markov process, it jumps between the self-adjoint
operators Ay,..., A, , defined on a Hilbert space H .

From this random evolution U (t), which is not a semi-group, the averaged evolution
Z(t) was taken (see e.g. Cheremshantsev[5] or Pinsky[30]). This evolution is a
semi-group, also called expectation semi-group, and it is generated by a dissipative
operator L. In fact it was shown that a self-adjoint dilation L on a Hilbert space
H > H can be constructed, so that the unitary group €' has incoming and outgoing
subspaces D_ and Dy in the sense of the Lax/Phillips scattering scheme, and such that
the averaged evolution Z(t) = e'** is the compression Py U(t)|x onto the coinvariant
subspace K = H & (D4 & D_). This dilation plays the role of the underlying reversible
dynamics, so that it can be studied together with the irreversible compression of it onto
the corresponding coinvariant subspace.

In this text we are interested in the averaged stability of the class of dynamical systems
affected by a 2-state Markov process with ’intensity’ s¢, where the evolution ’jumps’
between a stable and an unstable mode. To be more specific, the generator A; of the
stable branch of evolution shall be self-adjoint or dissipative, and the generator of the
unstable branch of evolution is assumed to have a one-dimensional accretive part, and
on its complementary subspace it is self-adjoint or dissipative. If the averaged evolution
for some choice of the parameter 3 of the Markov chain is a semi-group of uniformly
bounded operators then the system is called stable in average. We investigate the nec-
essary and/or sufficient conditions for stability in average. For a special case some answer
to this question is given, for more general cases a conjecture is made (cf. Conjecture 2.34)
which can be formulated to suit above situation as follows

Conjecture 1.1

Let m = (71, 72) be the equilibrium distribution of the Markov chain. Then a sufficient
and necessary condition for possible stability in average is that the operator A=
72A1 4+ 72Ay generates a uniformly bounded semi-group, that means that there exists
a constant K > 0 such that HeiAtH < K forall t > 0.



In order to find hints how to verify or how to modify this conjecture we shall investigate
the question of stability on three solvable models with the characteristics:

(i) both A; and Ay are bounded operators;

(ii) both A; and A are unbounded, A; is self-adjoint, and A, has a one-dimensional
accretive part and is self-adjoint on the complementary subspace;

(iii) both A; and A, are unbounded, A; is dissipative, and A has a one-dimensional
accretive part, but is dissipative on the complement.

A model for the situation (i) is studied in Chapter 3, a point mass in a random
potential. The wave equation on the finite string with random boundary conditions is
studied in Chapter 4 as an example of situation (ii). Then, in Chapter 5 we investigate
the wave equation on the semi-infinite string divided by a point mass and with random
boundary conditions. The evolution which interests us here is the evolution on the finite
part of the string separated by the point mass. Here we apply the Lax/Phillips scattering
scheme to obtain the dissipative operators.

RANDOM EVOLUTION

Motivated by a connection found by Mark Kac (see “Some stochastic problems in
physics and mathematics”, Magnolia Petroleum Co, Lectures in Pure and Applied Sci-
ence, 10 2 (1956) ) between a simple random movement of a point mass and the telegraph
equation

10° 0? ¢>2(1 0

U= U ——1

c 0t? w2 c ot
R. Griego and R. Hersh introduced the notion of random evolution in 1969
(Griego/Hersh[9]). It is connected with the Cauchy problem

{ 1Ly(t) = A,my(t)
y(O) =Y

where v(t) is some random process (e.g. Markov chain), and to each v(t) corresponds a
generator of a Cp-semi-group of operators, exactly what was constructed in Pavlov[28].
The original intention was not to actually study systems in which the mode of evolution
changes randomly in time, but to solve certain other Cauchy problems and find limit
theorems in connection with a general telegraph equation like

wy + 2au; = Au.

An overview of the results and problems for the time up to 1974 concerning random
evolutions is given in a survey by R. Hersh ([13]). Only later were actual systems with
random evolution investigated. S.E. Cheremshantsev ([5]) studied the scattering problem
on the Schrédinger equation

i%¢ = A + gz y(t)),

where the potential ¢(z <y(t)) depends on time via a Brownian motion y(t). The
averaged dynamics was constructed and the mean scattering operator was computed.



In the last chapter of a book by M. Pinsky ([30]) the question of stability of random
evolutions is treated. However, this is done only for the case that some small stochastic
noise is superposed to an oscillation, not for the case that the mode of oscillation
changes drastically. A long list of references of work done in this field up to 1991 is
given in this book.

In Chapter 2 of this text are listed the definitions of Poisson processes and Markov
chains, and also the definitions of the random evolution and the expectation semi-group.
The generator of the semi-group is the operator considered in Pavlov[28]. Some proper-
ties of this operator are found as well as some conditions for stability in average.

The spectral properties of the generator for all three solvable models (i), (ii), and (iii)
with regard to the question of stability are studied in the Chapters 3, 4, and 5. Then we
relate any result to the Conjecture 2.34 in Chapter 6.

Appendix A contains some definitions and propositions from the Theory of Linear
Operators, Semi-groups of Operators, Perturbation Theory, Theory of Differential Op-
erators, Krein spaces, and Hardy spaces, which will be quoted in the text. Longer
calculations, graphs and some details on programmes run to produce these graphs are
collected as attachments to the Chapters 3 and 4 in the Appendices B and C respectively.



Chapter 2

Random evolution and Stability
in Average

The notion of random evolution and expectation semi-group was introduced by
R.Griego and R.Hersh ([9]) in 1969. It provides a tool to study the question of averaged
stability of dynamics on a Markov background given by a Cauchy problem.

In the first Section 2.1 are listed the definitions of Poisson processes and Markov
chains, together with some properties. These are used in Section 2.2 to give the definitions
of random evolution and expectation semi-group. Some properties are then quoted from
the respective literature and proofs given in detail.

A definition for stability in average is suggested in Section 2.3, we study the generator
of the expectation semi-group and find some conditions for averaged stability.

Then, in Section 2.4, some observations are made about the infinitesimal generator
of the expectation semi-group for the special case of a continuous-time and symmetric
2 -state Markov chain.

2.1 Preliminaries about stochastic processes

The definitions in this section can be found in any standard book on stochastic pro-
cesses, for instance in Breiman[3], Grimmett/Stirzaker[11] or Taylor/Karlin[34].

2.1.1 The Poisson process

Definition 2.1
Let X be a random variable with values in the positive reals RT.
X is said to have exponential distribution with intensity s if Pr(X > ¢) =e .

The density function such a random variable X is
Pr(X € dr) = xe™"dr. (2.1)
An important property of the exponential distribution is the so called memory-less
property: If we think of X as the life-time of a certain unit and assume that the unit

has survived up to time ¢ > 0, then the random variable X <t of the remaining life-time
under the condition that it has survived up to time ¢ is also exponentially distributed



with intensity s¢, since for s > 0

Pr(X &t >s) e #6t)
Pr(X ot > s|X >t) = PrX > 1) ==

Definition 2.2

A family N = {N(¢) :t > 0} of random variables with values in the state space S = Ny
and with N(¢) < N(t+s) for all s, > 0 is called a Poisson process with intensity
2 if the properties (P1)-(P3) hold:

(P1) for any set of times t, = 0 < t; < ... < t, the increments N(t;) &
N(to),...,N(t,) ©N(t,—1) are independent random variables,

(P2) for s,t > 0 the random variable N (¢ + s) < N(s) has Poisson distribution with
mean i, i.e.

Pr(N(t+s)eN(s)=k)=———, k€N
(P3) N(0)=0.

2.1.2 The continuous-time n-state Markov chain

Definition 2.3
A family v = {v(t) : t > 0} of random variables with values in a finite state space

S ={1,...,n} is called a continuous-time n-state Markov chain or process if it

satisfies the Markov property:

For all finite sets of times 0 <#; < ...<t, <t and states k,j;,...,j, €5 itis
Pr(v(t) =klv(t1) = j1 A...v(ty) = jn) = Pr(v(t) = k|v(ts) = jn). (2.2)

The Markov property (2.2) is equivalent to the condition that for all k,j,{(u) € S
(0<u<s)

Pr(v(s+1t) = klv(s) = j). (2.3)
TRANSITION PROBABILITIES AND THE INFINITESIMAL GENERATOR

Definition 2.4
(1) If the transition probabilities Pr(v(s+t) = jlv(s) = k) are independent
of s > 0 then the Markov chain is said to have stationary or homogeneous
transition probabilities. In this case we define

pk(t) == Pr(v(t) = kv (0) = j).
(2) The Markov chain is said to be regular if

P_I}r(l)pjk(t) =0k Vi, kes.



(3) The probability distribution at time ¢ of the Markov chain is the vector

p(t) = (pr(®), - pult)) 1= (Pr(v(t) = 1), Pr(v(t) = n)),
p(0) is called the initial distribution.
(4) The set of jump times (7,),en is defined by
0=0, T =inf{t>7 :v{t)#v(r)}, neN.
(5) The jump probabilities (J;1);res are
Jik = Pr(v(m) = klv(0) = j).
Certainly it is
Z Jir=1,7€85. (2.4)
k=1 k;

The set {p;x(t) : j,k € S} of transition probabilities for a continuous-time, regular
n-state Markov chain also satisfies the conditions (see e.g. Breiman[3]):

Q) épjk(t) —1 jes

(i) pilt+5) = g pit(®)p(s)

(Chapman—Ko_lmogorov forward equation)

Definition 2.5
The transition matrix P(t) is defined as

pia(t) - pin(t)
P( ) (p]k ]k 1

The left-eigenvector 7 of P(t) to the elgenvalue 1 is called the equilibrium distribu-
tion, i.e. itis 7 P(t) =7.

With the help of the transition matrix P(¢) the distribution p(¢) at time ¢ > 0 can
easily be calculated from the initial distribution p(0). We have

pi(t) = Pr(v(t) =)
= " Pr(u(0) = hPr(v(t) = j|#(0) sz )it
=1
and hence

p(t) = p(0) P(t).

It is easily verified that the family {P(¢) : ¢ > 0} has in fact the properties (SG1)-
(SG3) of a one-parameter semi-group of operators listed in Appendix A.2.



Definition 2.6
For the Markov chain with (stochastic) semi-group {P(t) : ¢ > 0} define the infinitesi-
mal generator (@)

. Pityel
=l =

Then @ and P(t) satisfy

d
SP(1) = QP(1) = P)Q

For the row sums of ) we get

- . _ : p]k ¢>p]k _
;%k = }55%2 —,E%t (Zp]k @1) =0. (2.5)

In Grimmett[11] it is shown that from the Markov property and homogeneity follows
that the sojourn times 7 are exponentially distributed with some intensity ¢; dependent
on the state j the chain is in. In fact one has for j € S with some ¢; >0

Pr(r > t|r(0) = j) = e %"

and with the jump probabilities one gets

Pr(v(r) =k, 7 > t|r(0) = j) = Jre %" (2.6)
It follows for j # k
d

qik = dtp]k ) o = ks

and with (2.4) and (2.5)

e
i = Z Gik = 4;
k=1,k#j
that is

95k

¢; = <g¢; and ij—¢>— forj=1,...,n (2.7)

Definition 2.7
Define the random variable N (¢) which counts the number of jumps up to (and including)
time t. And let N,(t) be the number of jumps in the interval (s,?].

The following proposition, also to be found in Griego/Hersh[10], gives an estimate of
the probabilities for m jumps of the chain up to time ¢.

Proposition 2.8
For m € Ny we have

t m
dep,e0>0 0 Pr(N({t)=m) < (C;n)' e~ 2! (2.8)

Proof: (by induction)
Define ¢y := max{qr;k=1,...,n} >0 and co:=min{g;k=1,...,n}>0.



Let m =0, then

Pr(N(t)=0) = > Pr(N(t)=0v(0) = k)Pr(v(0) = k)
k=1

n

= D e p(0) < et

k=1

Assume the assertion holds for m <1, then we get for m (with conditioning on the
time 7 of the first jump):

Pr(N(t)=m) = /0 Pr(N(t) = m|r = r)Pr(r € dr)

= /t Pr(N,(t &r)=mel) zn:PI’k(T € dr)
0 k=1

IA

/t [c1(t @r)]m—l T Z qre™ " dr
0 k=1

(m<1)!

1
CT e—c2t (t ¢>r)m—ldr _ (Clt)me—cy‘
(m<1)! 0 m!

TRAJECTORIES

When we follow a realisation of a continuous-time Markov chain we note the state
v(t) in which it is at each point of time ¢ and the jump times (7;);eny at which the
states change. The function v(¢) is a right-continuous piecewise constant function with
values in S = {1,...,n}. This gives rise to the

Definition 2.9
(1) A (infinite) collection of pairs

w ={(0,00), (T1,01), -+ - s (Tis Om), - - - },

where 7; are jump times and o; are the states in which the Markov chain v is
in the time interval [7;,7;41) is called a trajectory or sample path. Let w(t)
be the corresponding piecewise constant function. From the definition of N(¢) we

get w(t) = ongy -

(2) With the shifted trajectory by time s > 0 we mean the trajectory

@s =4(0,00), (T1,01), -+ s (T, Om )y - - }
where

%j:TN(s)-l—j@S , 7> 1

. . 2.9
0j = ON(s)+j ,j 20 (2:9)
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Figure 2.2: The reverse trajectory

(3) A finite trajectory up to time s (of length s) we denote with
U.’[S] = {(07 00)7 (7—17 01)7 SR (TN(5)7 UN(S))}

(4) For a finite trajectory we can consider the reverse trajectory

":’[S] — {(07 &0)7 (7217 6-1)7 DI (TN(5)7 UN(S))}
with
f=s&TNE) s J=1,...,N(s) (2.10)

N
&j:UN(S)—j 7(].:07...7]\7(8)

From above definitions and the Markov property follows

Lemma 2.10
(1) Let w be a trajectory and t > 0, then

Pr(w|w[t]) = Pr(&,) (2.11)

(2) Let P(t) be symmetric and s> 0, then

Pr(w[s]) = Pr(&[s])



2.2 Random evolution

Let Ay,...,A, be infinitesimal generators of Cy-semi-groups Ti,...,T, on the
Hilbert spaces Hy; = (H,[.,.]1),...,H, = (H,[.,.]n), and let M > 1 and S > 0 be such
that

1Tl < Mt for j=1,...,n. (2.12)

The domains D(A;) C H,j = 1,...,n, need not be the same subspaces of the vector
space H , but the inner products are assumed to be at least mutually equivalent. We
define the two sets of positive constants (v;x)7,_, and (, jx)7 -, by

Ykl <ALl <5 elllle a3 k€S,

Further let v = {v(t) : t > 0} be a continuous-time Markov chain on the finite state
space S = {1,...,n} with infinitesimal generator () = (‘]jk)?k:1 and transition matrix
P(t) = e?*. The random evolution is connected with the Cauchy problem

g5

2.2.1 Forward and backward evolution

Definition 2.11
For a given trajectory w = {(0,09), (71,01), .-, (Tm, 0m), ...} the following operators
are defined:

(1) the backward random evolution (Griego/Hersh[9] and [10])
My(t,wlt]) =T (11) T, (12 ©71) -+ Lo (L ST )
(2) and the forward random evolution (Keepler[18] and [20])

Mf (tv w[t]) = TUN(t) (t ¢>7—N(z‘)) o 'TCT1 (7—2 ¢>7—1)TCT0 (Tl)‘

Obviously, if the operators 7;, j = 1,...,n, commute, the backward and forward
random evolutions coincide.

Immediately from the definitions of the random evolutions and the reverse and shifted
trajectories as well as (2.12) follows

Lemma 2.12
(1) For a trajectory w with N(t) =m and k € S it is

J

IVl < (max], )™ M7 e

(2) My(t,w[t]) = My (1, &[t])

10



(3) Mb(t,w[t]) = Tw(o)(Tl)Mb(t (:)7-1,&’71 [t C}Tl])
Mf(t,w[t]) = Mf(t C}Tl,a’ﬁ [t C}Tl])Tw(o)(Tl)

Proposition 2.13
If t# 1 for k€ N, then

(1) LLM,(t wit]) = My (t, w[t]) Aoy,

(2) My, w[t]) = Ay, My (t, wlt])

Proof:

(1) For j=1,...n is A; the generator of the semi-group 7} , thus

1d
o Li(t) = ATy = T4

from Theorem A.23. N(t) is constant for ¢ # 71, k € N, therefore

1d d

1
s M elt]) = Tog(m) - Toy (v SN 0-1) 7 g Tony (SN )

= Too (1) Loy (Tn(y TN -1 To 0w (E TN Aoy,
= My(t,w[t])A

IN(1)"

(2) and similarly

1d 1d

FaMitell) = 5T, (v - Lo (r2 &) Top (1)
= AUN(t) TUN(t) (t ¢>TN(t)) Ty (T2 @TI)TUO (Tl)
= AUN(t)Mf(t,w[t]).

a

Though M;(t,w(t]) and My(t,w[t]) are not semi-groups, following ’almost semi-
group’ properties hold (for part (1) see Griego/Hersh[10], for part (2) Keepler[20])

Proposition 2.14
For s,t > 0 we get

(1) My(0,w[0]) =idy and My(s+t,wls+t]) = My(s,w[s])My(t,&[t])
(2) Ms(0,w]0]) =idg and My(s+t,wls+t]) = Ms(t,&4[t]) My (s, w[s])

Proof:

e From the definitions immediately follow that M;(0,w[0]) =idg and
M (0,w[0]) =idp .

11



e Because of Ty(;) < s < Ty(s)41 and the semi-group properties of T} it is

Ty (TN(s)+1 STN(s) = Ton (s (s <:>7_N(s))TUN(S) (TN(s)+1 ©5),

and then

Mb(s—l—t [s—l—t])

Too(T1) - ( N(s)+1 ¢>7’N(s)) 'TUN (t¢>TN(s-|—t))
Too (1) - (s@m )
(

'TcrN(S)( (s)+1 &8) Topyn (ESTN(s+)
My (s, w[s])TUN(S) (TN(5)+1 &s) - TUN(s+t) (t ¢>TN(S-I—t))v

so that with the definition of the shifted trajectory, (2.9), we get

My(s+t,w[s+t]) = My(s,w[s])T5,(70)T5, (T2 &71) - - -T&Ns(t) (t @%Ns(t))
= M(s,w[s])My(t,@s[t]).

[Eda]

Analogous calculations yield the second equation in (2).

2.2.2 The expectation semi-group

Definition 2.15

Let (H,{.,.)) = X

and let f = (fi,-.., fa)t € H with fr € H. On H are defined, component-wise at
some time ¢ > 0,

s

(H,[.,.]Jx) be the cartesian product of the Hilbert spaces (H,[.,.]x)

(1) the backward expectation operators &(t) (Griego/Hersh[9] and [10])
(&) )k = B [My(t,wl]) fugy s 0(0) =k , k=1,...m,
(2) and the forward expectation operators &f(t) (Keepler[18] and [20])

(€0 P = B |My(t,wl) fuoy : w(t) = k|, k=1,....m.

Remark 2.16

(1) In the paper Keepler[18] are given the definitions of the expectation operators in
terms of integrals and in a recursive manner, it is also shown that these definitions
coincide with the ones given above.

(2) With the notation £ [My(t,w[t]) fu);w(0) = k] is meant that the sum in the
expectation value of Mj(t,wl[t]) f ;) shall be made over all trajectories w with
initial state w(0) = k. The analogous is meant in the other case.

12



(3) The definition of the forward expectation operators is more natural for our purposes
in the following sense:
Imagine one knows the initial vector y(0) and the initial distribution p(0) of the
Markov chain. Then with f; = p;(0)y(0),7=1,...,n, the vector

Uy, pl(t) =) (&(1)f), € H

k=1

is the expected value of the solution to (2.13) at time ¢.
The following two theorems are due to R.Griego and R.Hersh [10].

Theorem 2.17
The family {&(t) : t > 0} of operators forms a Cy-semi-group of bounded operators,
i.e. it satisfies the conditions

(1) 3L>1L,a>0 : ||&1)], <L e
(2) &(0) = idy
(3) E(s+1) =E(s)E(t) = &(t)E(s)  for 5, >0
(4) VI eH « im|&(0)] < ||, =
Proof:

(1) Set My := M max|, x;|, then we get with (2.8) and Lemma 2.12(1)
J

10l < [HMbw[ﬂ)fmHk;wm):k}

< [ttt ol w0 =]

_y B[t @), (| fugoll5(0) = k[N (1) = m] Pr(V (1) = m)

= m+1 _Bt|| F (i)™ 4
< Z M| f, mC ”
m=0 '

< Myl P

then with M := m]?XMk

les) fll, = ZH &), |1x
< nM2€2(ﬁ+Mcl—C2)tHin —. LzezatH]ZHiU (2‘14)
and hence

l€n@)]l < L e

13



(2) Let ke {l,...,n}, then
(&0)f), = E[My(0,w[0]) fo0);«(0) = k]
= 55(0) = idy.
(3) We have with the fact that E[X]= E{E[X|Y]} , the Markov property (2.3) and
Proposition 2.14
(Eb(s T t)f)k - E[Mb(s 1,05 + 1) fuorny;w(0) = k}
= E[E[Mb<s+t,w[s+ 1) fusrn)3 @ (0) = klw(u), 0 < u < s];
- E{Mb(s,w[s])E[Mb(t,&S[t])fos[t];as(o) = w(s)];w(0) = k}
= B | My (s, 9[5]) (€ /) uo)s(0) = k|
- (Eb(s)é’b(t) f)k

(4) Again we use (2.8) and Lemma 2.12(1)

H<5b<t>f>k S fil = 1B Mt lt]) fug;0(0) = K] < il
[I|Mb(t Wlt]) fue) € frlln; 0 (0) = F]

_ Z (1M 0, 001 Loy & Fills 0(0) = KN (1) = m]| Pr(N (1) = m)
< [Tl +

+ mi:l B85 (¢, ) Lol 11 felli £(0) = k| N (t) = m] (C;?!me‘m
<) fe < el + 1l f:(Mm+1 54 ) (07172)! ot

m=1

HTk fk @kak + ||f||y€_c2t [Mkeﬁt( Myert @1) + (eclt @1)]

Since T} are Cp-semi-groups we have from above

11_%“ (&t k@f’“Hk < hm (HTk( Ve < fellk +
e [Me (¥t 1) + (2 1)) )
= 0

Remark 2.18
Note that G+ Mey ey > 8 in equation (2.14) since M > 1 and ¢ > ¢3.
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Theorem 2.19
The Cauchy problem

F(0) = fo
for a vector function f(t) =(filt)y.--, fu®)', t >0, 0n H is solved by
f(t) = gb(t)fo

That is, the infinitesimal generator A, of the backward expectation semi-group &, is

{ ldi(f)J:Ajfj@ikz Grfe, 7=1,....n
=1

Ay 0 quidg -+ quuidy
Ay = &1 : : =
0 A, Guiidyg <+ Qupidyg
= diag(A1,...,A,) <t Q x idy

Proof:

We show that A, generates & .

Let 7 be the time of the first jump of the Markov chain, and the index j at Pr;(X)
denote that the chain is in state j. We have for j € {1,...,n}

(&) f); = E[My(t,w[t]) fugey; w(0) = j, 7 > t] + E [My(t,w[t]) fy; w(0) = j, 7 < 1]
= T;(t) f;Pr;(r > t) +/0 E[Mb(t,w[t])fw(t);w(()) = jlr = r} Pr; (7 € dr).

Now with (2.1), (2.6), (2.7), and p =&,

/OtE{Mb(t,w[t])fw(t);w(O) —jlr= r} Pr;(r € dr)

= /OtE{Tj(r)Mb(t e, [t 1)) fo, (-riw(0) = j|T = r} Pr;(r € dr)

- / i) Y B[t Sl 1]) fumny n(0) = K Pri(o(r) = H)Pr(r € dr)
0 E=1,k#j

n

= /OTj(r) Z (Eb(tﬁr)f)k(qjke_qﬂr)dr.

k=1,k#

Then we have for the operator A, with Theorem A.23(1)

(.A f)] = lim (Eb(t)f)] @fj

t—=0 it

t—0 1t L 1;#'
= ? ]

— lim {Tj(t)ijfj(T >t < fi+ /OtTj(f‘) zn: (Ep(t ¢>r)];)kq]'k€qgrdr]

;) f; & f Pr](T >t &

= 11_% [Pr] (r>t)-2 m i f]
Z Gk~ / V(& t@r)f)ke_qﬂrdr
k=1 kj
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and thus

(Af)i = Ajf Sigifiei D anTi(0)(E(0) )

k=1,k#j

= Aif; 1) gl

k=1

Remark 2.20
In the original papers Griego/Hersh[9] and [10] the result is stated that the generator

Ap of &(t) is Ay = diag(Ax) +Q Xidp , with @ instead of (<¢)Q . The reason for the

difference is that by their definition the semi-group generated by an operator A is e,

There is a simple connection between the backward and forward expectation semi-
groups, also treated in Keepler[18] and in particular in Keepler[19].

Proposition 2.21

Let &/(t) be the backward expectation semi-group of the n-state Markov chain v with
generator (), and let Fy(t) be the forward expectation semi-group of the n-state
Markov chain n with the transposed generator QQ'. Then &y(t) = Ff(t). In par-
ticular we have

Q=0Q" = &) =¢&(@).

Proof:

Let My(t,w[t]) be the backward random evolution for v and M;(¢, p[t]) the forward
random evolution of 7. Further let F,[X] be the expected value corresponding to the
chain v, analogous for F,[X]. Then for k=1,...,n and feH

(gb(t)f)k = F, [Mb(tvw[t])fw(t);w(o) = k]
= D B[t @) f;0(0) = b Aw(t) = j]

= B, [M;(t,&[t]) fooy 0 (t) = K. (2.15)

Now, the probability of the reversed trajectory & for v is the same as the probability of
the ‘forward’ trajectory g =& for 5, since 7 is generated by Q! and Lemma 2.10(2).
Thus we get in (2.15)

(E) Nk = (Frt) Px-

Corollary 2.22
The family {&;(t) : t > 0} forms a Cy-semi-groups of operators with infinitesimal
generator

Ay i=diag(Ar,..., Ay) €1 Q' X idy
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Remark 2.23
Regarding the operator (@ X idg on H we make following observations:

(1) The operators idy represent the identity operator in H . Should H be of finite
dimension, and the operators A; be represented as some matrices with respect to
different bases, then the operators idgy are not represented as identity matrices but
rather as some change of basis matrices, according to their position in the matrix
operator ) X idy .

(2) In the case that the norms ||.||1,...,].]|» are different the operator idy in the
jth row and kth column of @ X idy is the embedding

I]‘k : (I{7 <.7 >k) — (I{7 <.7 >]) , U—u,

and the operator norm of [;; is not necessarily equal to 1.

2.3 Stability in Average

Our concept of stability is motivated from the physical context where the (suitably
chosen) norm of a vector function w(t) may represent the physical energy of a certain
object, e.g. a particle or a string. We call an evolution given by a semi-group {T(t)}t>0
of bounded operators stable if for each w € H the norms [|T(t)ul|y are uniformly
bounded (or equi-bounded) over all times ¢ > 0. In general the matrix ¢ will not be
symmetric, but then the forward and backward expectation semi-groups are not equal.
Considering their definitions and Remark 2.16(3) it seems more natural to connect

stability in average with the forward evolution, thus we suggest the

Definition 2.24

The dynamical system given as the solution of the Cauchy problem (2.13) is said to be
stable in average if the operators &;(t) of the forward expectation semi-group are
uniformly bounded, i.e. if there exists a constant K > 0, such that ||E¢(t)||y < K for
all t>0.

Remark 2.25
(1) It would be interesting to find an example of a system (with non-symmetric Q)
where the forward expectation semi-group is uniformly bounded, and the backward
is not, or vice versa.

(2) If the operator norms of the family {&7(t)},.,
norms of the expected values W[f,p](t) are uniformly bounded for every initial
vector f € H and initial distribution p, this corresponds to the described concept
of stability.

are uniformly bounded, then the

(3) Certainly, if the generator of the expectation semi-group is dissipative then the
system is stable in average (cf. Appendix A.2).
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Before we state some sufficient and necessary condition for strong dissipativity of the
operator A, we list some properties of the matrix operator ¢ X idg .

Lemma 2.26

If all inner products are mutually equivalent then () X idy is a bounded operator on
H.

Conversely, if () generates an irreducible Markov process, and if ) X idy is bounded,
then all inner products are mutually equivalent.

Proof:
Let 41,...,7, and , 1,...,, , be positive constants, such that

v G < IAIE < FHIAIG
forall fe H and j=1...,n, and let f:(fl,...7fn)t€7-l.Thenweget

n

A2 2
loxidnfl? = 3| Zq]kfku (menfknj)
] 1 k=1 ] 1 k=1
< Y (Zm 1£4ll?) < mmalajel?) Z il el
7=1 7=1 k=1
< n? ff}%X(lqjkl max(y;) lefklh
' k=1
and also
1711 = ZkaHk > Zv EllfllT > min Z||fk||f
Now we get
A2 ;
J@x dufl® 2 M)
MOXMATI 2 () =
I AR TITIN
so that ) X idy is bounded.
For the converse we assume that the norms ||.||; for j € J C S ={1,...,n}, and the
norms .||y for £ € K := S\J are mutually equivalent respectively, whereas ||.||; and

|||z are not equivalent for 7 € J and k € K.

Since the Markov process is irreducible, there exist jo € J and kg € K such that
Qioko 7 0. (cf. Grimmett/Stirzaker[11]), w.l.o.g. let jo =2,kg=1.

Now, ||.]]1 and ||.||z are not equivalent, so that

Vm >0 3fn € H: ||fnll3 > m]lfulli.
We set f,, = (fm,0,...,0)" € H, then we have with ||f~m||%{ =l fmll

n

HQ X ldHfN‘mHi = H(q11fm7 s 7(]n1fm)tH§{ = Z |q]1|2||fm||?
7=1
> g Pl fnll3 > mlga |l

18



Hence ) X idy is unbounded, contrary to the assumption.

Lemma 2.27

Let () be a complex n X n-matrix.

If all inner products {.,.)1,...,{., .}, are equal, then the adjoint of Q X idg in (H,[.,.])
is Qt X idpy .

Conversely, if ) generates an irreducible n-state Markov process and (Q X idy)* =
(Q! x idy) , then all inner products are equal.

Proof: B
Let Q@ = (4;)}4=1,Q" = @Gw)Tey = (@)1, U = (Wi, u0)" and Vo=
V1yeee ) EH L
Suppose (., )1 ="---={., . )n =:{.,.), then we get
[Q xidgU, V] = Z< (]jkuk7vj> => <uk7sz_‘kvy‘>
=1 k=1 k=1 7=1

= [U, Qt X idHV]

so that the adjoint of @ x idy is Q' x idg .
For the converse, we have

[Q X idg U, V] = zn:zn:q]‘k<uk,vj>]‘ (2.16)

7=1 k=1
U,Q' xidg V] = ZZ(UJ‘JL‘WQJ‘ (2.17)
7=1 k=1

Equations (2.16) and (2.17) are equal if and only if

qufk<“kvvj>j = quk1<uy‘7vk>1 (2.18)

J=1 k=1 7=1 k=1
for all U,V € H. If we choose uy = fo; and v; = ¢6,,; with m,l=1,...,n and
f,9 € H, then (2.18) yields

4t fs 9)m = @ui{fr9  Vf g€ H.

If ¢ # 0, then we immediately get (.,.),, = (,. ). If ¢ = 0 we use a similar
argument as in Lemma 2.26, since the Markov process is assumed irreducible, and thus
we obtain that (.,.),, = (,,.); forall m,l=1,...,n.

Corollary 2.28
If all inner products are equal, then Re(() X idy) = (Re Q) X idy and Im(Q x idg) =
(Im Q) X idpy .
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Before we state the next Lemma we note that each element (y, g) of the space Cx H
can be identified with the vector (y1g,...,y,9)' € H.

Lemma 2.29
Assume all inner products are equal. If there exists a subspace ¥ C C* and m € R
such that (Qz,z)on < ml||z]|3. for all @ Len Y, then we have

[Q X idpU, U] < m[U,U] YU Ly (Y x H)

Proof:
From the assumption we have that for all © Len Y

(Qu,2)or = Y ipan®y < daflE (2.19)
k=1

A vector U = (uq,...,u,)" € H is orthogonal to ¥ x H if and only if

n

VyeY,ge H [Uyg| = Z<Uj,ng>H =0 & Zij_j: 0 VyeY (2.20)

i=1 i=1
Let {&;}ien be an orthonormal basis for H | so that for each j =1,...,n exist coeffi-
cients {O‘;}leN with u; =) ey O'é(bl . Now we get

@ xidyU, U], = Z Zq]kuk,u] :ZZ%MZUWhZU}%WH
1=1 k=1

J=1 k=1 leN melN
=Y (Y k) o1
leN  j=1k=1
We define 2; = (af,... al)! for [ € N, so that from (2.21) follows
[Q xiduU, U, = (Qui,a1)en (2.22)
leN

If ULlyY xH then 2 Len Y for all [ € N, since from (2.20) it follows with y € Y

0= 7= Lu S ohw =L (L weh)a

j=1 leN leN j=1

& O—Zy]]—xh@n VIENyeY

Finally, from (2.19) and (2.22) follows

Qxids V.01, <0 Y ol = 2 303 Jolf —AQZH%HH—AQWHH

leN leN j=1

Corollary 2.30
If all inner products are equal, and if 0 = Ay > Ay > ... > A, are the eigenva]ues of
the real and symmetric matrix ), where Ay = 0 is s1mp]e with eigenvector w', then
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Q x idg is bounded from above on the orthogonal complement of {r'} x H in H, i.e.
with R :=H & ({x'} x H)

Q X idH|7z S /\QidR

Now we are set to investigate conditions for the strong dissipativity of the operator
Ag(s2) = (diag(Al, oy Ap) &t X idH) for the special case that the operators
Ay, ..., A, are bounded and all inner products are equal. Inserting the variable 3 > 0
corresponds to ’accelerating’ or ’decelerating’ the Markov process generated by the
matrix .

Theorem 2.31
Let the generator A,y of the dynamical system (2.13) jump between the operators

Aq, ..., A, on the Hilbert space (H7 (., >) via a Markov process which is generated by
the symmetric matrix (Q and which has the equilibrium distribution = = (71,...,7,) .
Assume that Ay,...,A, are bounded operators such that

Im(A}) > iy idy (2.23)

for j =1,...,n, and largest possible values of p1,...,u, € R.
Now, if for some a > 0

n

Im(zn:ﬂ]zAj) > a(Zﬂ?)idH (2.24)

=1
then there exist 0 < A < « and 3 > 0, such that
ImA; () > X idy.

Conversely, it  ImAy(s) > My for some A >0 and »x € R, then Im(z:?:1 T]ZAJ‘) >
/\(2?21 w?)idg .

Proof:

We define pg := min{u; : j = 1,...,n}, A :=diag(A;,...,A,) and o := ||[ImA| =
(2?21 ||Im(Aj)||2)1/2 . It follows from (2.23) that Im(diag(As,...,A,)) > poidy , and
note that o is positive unless all operators A; are selfadjoint, and this is the situation
treated in Pavlov[28].

@ is a stochastic matrix, so that zero is a simple eigenvalue of Q' with (right) eigenvector
7 € R™, all other eigenvalues are negative. The nullspace of M := <iQ! x idy is

Ne={(mf,....7 ) : feH} ={r'} x H.

Let R := HO N and mg = min{|7’| : 7T is non-zero eigenvalue of Qt}, then with
Corollary 2.30 we get

Im(M|7g) = @Re(@t X idH|R) > mg idg
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The adjoint of M is <M , since Q = @', so it follows MR L A'. Now, using above
estimations and inequalities, we get with Ve R, W eN, U=V +W € H

Im[(A+ MU, U] =
= Im[(A+ M)V, V] + Im[AW, V] + Im[AV, W] + Im[AW, W]

= Im[(A+ M)V, V] + Im[(A &A™V, W] + Im(zn:mmf, ﬂjf>)

7=1
Thus we get with some £ > 0
Im[(A+ »>M)U,U| =
> (o -+ semo) [V I[* 2| (A S AWIIW 4+ Im{ 3724, 1)

7=1
2 A 2 1 2 - 2 2
> (o + semo) V|12 & | ()| (<1VI2+ ZIWIE) + (3272 11
7=1
= (10 + emo ©20)|[VIP + (a D) WP = ()
We require that
() 2 MUIP = MV + 1371

which is satisfied if

xmg + po S0 > (2.25)
asl > (2.26)
£

Equation (2.26) is fulfilled for ¢ = %~ and any 0 < A < «, and then (2.25) is satisfied
for

2

> L (nept -2 (2.27)
%_mo a oS A '

For the converse, choose U = n'f € {r'} x H and observe that
(> wAf) = Im[(A+snU,0] > MU = A7) 71
Jj=1 7=1
This proves the theorem.

a

The system is stable in average also in the case when Ay is only similar to a strongly
dissipative operator (see Proposition A.29, which is considered in the next theorem.

Theorem 2.32

In the situation of the theorem above let Fy and P, be the orthogonal projections of
H onto N and R respectively.

Then the operator Af(s) is similar to a strongly dissipative operator for some 3 > 0
if the component PyAP, is similar to a dissipative operator By on N = {r'} x H , ie.
if there exists a bounded and invertible operator X : N' — N and (3 > 0 such that
By = XPy APy X~ and Im(By) > 3 idy .
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Proof:

First we note that the operator X : N' — A can be identified with an operator on H ,
since a vector (mif,...,m,f)" € N is mapped to a vector (mig,...,7,9)" € N, thus
the essential part of X is the mapping from f € H to g € H. This operator we also
denote with X .

We transform the operator Ays(x) on R x N to

B, () idg 0 Pi(A+xM)P1 P AP, idg 0
S 0 X PyAP, PyAP, 0 Xt )

and by similar calculations as in the proof of Theorem 2.31 we can find

1 o2
x> — | Asu+
mo

B
with 0 <A < g and o= |4 (|| X]| + |IXY|) so that
Im(Bg(s)) > Aidy.

Remark 2.33

We can extend the conclusions of Theorem 2.31 and 2.32 at least to the case where )
is a real and normal matrix with one zero eigenvalue and which other eigenvalues have
strictly negative real part, since then Re() fulfils the conditions of Lemma 2.29 and it
is also MR L N .

Theorems 2.31 and 2.32 deal with the situation of equal norms. However, in many
interesting situations, like the examples in Chapters 3, 4 and 5, the canonical choice
of the norms ||.||; = +/(.,.); on each copy of H results in merely equivalent norms,
and the Markov process generally is not symmetric. Additionally, it is sufficient for
stability in average that the generator A; of the expectation semi-group be similar to
a dissipative operator. Thus with view to Theorem 2.32 we pose the following conjecture.

Conjecture 2.34

Let Ay,...,A, be bounded operators, satisfying (2.23), on some Hilbert spaces
(H,{(.y 1)y .- (H,{.; ) with mutually equivalent inner products, and let () be the gen-
erator of the Markov process with equilibrium distribution © = (71,...,7,). Then the

following two statements are equivalent:
(i) There exists a positive s such that the dynamical system (2.13) affected by the
Markov process generated by () is stable in average.
(ii) The operator A= T2AL + -+ w2 A, generales a semi-group ciAt of uniformly

bounded operators.
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2.4 The generator A of the expectation semi-group for a
2-state Markov chain

Here we consider the special case of a symmetric 2-state Markov chain v with gener-

a1
Q::%( 1 @1)

where the sojourn times in the states are exponentially distributed with intensity s > 0.
Let A; and A, be two infinitesimal generators of Cp-semi-groups 77 and 75 on a
Hilbert space H with domains D(A;) and D(A;). Since @ is symmetric, the forward
and backward expectation semi-groups are equal, i.e. &(t) = &¢(t) =: £(t). The
generator of £(t) is

.A(%)_ Al +ixidy S idy
- S idy Ag + i idy

ator

We want to find conditions so that A is dissipative or similar to a dissipative operator,
80 the spectrum of A is of special interest, especially its dependence on s.

Remark 2.35
(1) From Lemma 2.27 we know, that <i@) x idg is not symmetric, so A(3) is not
symmetric either.

(2) If all norms are equivalent, it follows from Lemma 2.26 that the operator A(3r) can
be regarded as a bounded perturbation of the diagonal operator A(0) = (%1 £2)
for all > 0.
(3) From the proof of Lemma 2.26 we get an estimate for the operator norm of <iQ" x
idg
1

< || C}i@t X 1dH||7-£ < 23, [ —

9

2.4.1 The Frobenius-Schur factorisation of A

In order to study matrix operators we can express them as a Frobenius-Schur
factorisation, also called LDR factorisation in books on Numerical Analysis, eg.
Stoer/Bulirsch[32]. As one can check directly, we have for A(s) <a idy with a € C

. . idy 0
A(x) aidy = ( iR idy ) (2.28)
A oo six)idy 0 ' idy  eixR{™
0 As C}(O& C}i%)idH + %QR?_“{ 0 idg
or
A(3) &aidy = idy il - (2.29)
0 idg
Ay oo six)idy + 2Ry 0 idg 0
0 Ay C}(O& C}i%)idH @%Rg_“{ idg
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where Rf_m and Rg_m are the resolvents to a3 of Ay and A, respectively.

2.4.2 A for small intensity

For small values of the intensity s we can regard the generator A(x) as a weak
perturbation of the diagonal operator A(0). We assume here that A; and Ay are self-
adjoint or anti-self-adjoint.

Let ap be an eigenvalue of A(0) with eigenvector ug. For small s we can expand
the eigenvalue «(3¢) to the eigenvector u(s¢) of A(sx) as power series

alx) = ag+ o +---

() = wug+ seug+---

Then we get with B := ( dg _idH)

—idy idg
AQG)u(se) = (A(0) +i3B)(ug + »cu1 + -+ -)
= A(0)ug + »(iBug + A(0)uy) +-- -,
and  a(x)u(sx) = (ag+2oq+ - )(ug+ 2ur +--+)
= agug + »#(aug + auy) + - - -
Comparing the coeflicients in above equations and dropping the higher order terms we
get
A0 ug = apug A A(0)uy + 5B idgug = apuy + aqug -
When we waive any condition on the norm of u; we can choose wu; 1L ug and get
<(.A(0) C}O&o)uh U0> =y <U07 U0> C}i%<BUO7 U0>-
If A; and A, are self-adjoint or anti-self-adjoint, we get ((A(0) ©ap)ui, up) = 0 and
then
<Bu07 u0>

= i1 2.
) = ix Tio, o) (2.30)

Since the eigenvectors wug of A(0) = (%1 £2) are of the form (v1,0)! (or (0,v2)" ),
where vy (or vy ) is eigenvector of A; (or Ay ), we have for instance

o ={ (215 () (3)) -t

and (ug, ug) = (v1,v1) .

From (2.30) follows that «y = i3, similar for the other case ug = (0, v2)".

This actually means, that as a linear approximation of the eigenvalues of A(x) at
2 =0 the imaginary parts increase with increasing value of 3¢, that is, graphically, the
eigenvalues in the complex plane “go up”.
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2.4.3 The adjoint operator of A

IN A HILBERT SPACE OF FINITE DIMENSION

As a first step assume that A; and A, are linear operators on a finite dimensional
Hilbert space H = C" ,i.e. n X n-matrices. Then the hermitian of A(x) is

Al () = ( Al &ixidg  ixidg ) 7

ixidg Al eixidg
and we see immediately that A(>) # A’(3) for > >0, A(3) is not hermitian.
To check whether A(s¢) is normal, calculate
AG) A () = A1 AL+ i3e(AL S Ay) + Pidy ix(A; ©AL) &2 dy
A = i(@AL 4 Ay) ©2:%dy AyAl + is( AL & Ay) + stidy
and

A (50) A(5) = AVAL + i3(A] ©As) + 2:5d gy ix(SAl + Ay) ©252idy
)= ix(A; & AL) ©2:2dy AL Ay + is( Al & Ay) + 25¢%id

so that A(s) is normal if and only if Ay = Ay and A; is normal.

IN A HILBERT SPACE OF INFINITE DIMENSION

For the case of infinite dimensional Hilbert spaces it has been noted that one might
have different inner products [.,.]; and [.,.]z on the two copies H of the same space of

vectors. Then, with regard to (2.28) with a = 0, the adjoint of, say, ( idg 0O ) of

—i%Rl_“{ idgy

0 idgy

o) (o) (7)) = () () (7))

or, equivalently [&isR; U, 7], = [U, BZ]y , and for the adjoint of (47 ="} of

the form (idH B ) is determined by the condition

the form (i%H idOH) we require [©ixR7ZV, W]y = [U,CZ],.

2.4.4 The resolvent of A

From the Frobenius-Schur factorisation (2.28), at least formally, we get an expression
of the resolvent R = (A <aidy)~! in the form

o _ [ idm ixRYTY
R _( 0 id )

Ry~ 0 ( idg 0 )

0 (A & (o @i%)idH—l—%zR?_m]_l iR idg )
If the operator to the right exists then R® exists and « is a regular point of
A. Conversely, if @ € o(A), then one of the operators RY™ or T7' :=

[Ay & (a eisx)idy + #2 Ry ™) ! does not exist.

26



From (2.29) we get the expression

" idgp 0
RE= ( ixRSTF idy )

[ War st sty om0 (et
0 Ry~ 0 id g '

Now, if «€o(A) then one of the operators RS~ or Tt
(A1 & (a eisx)idy + #* Ry ™) ! does not exist.

27



Chapter 3

A point mass in a random
potential

In this chapter we study the question of stability in average for a simple example - the
one-dimensional movement of a point mass in a potential which changes randomly. It is
assumed to jump between two different potentials, one of which determines a stable, the
other one an unstable dynamics, in a sense to be defined in the beginning of Section 3.1.
The jumps shall be modelled by a symmetric continuous-time 2-state Markov process
with exponentially distributed sojourn times with intensity .

The example is simple in the way that the generator A of the expectation semi-group
is a 4 X 4-matrix, the four eigenvalues can be calculated explicitly and sufficient condi-
tions on the values of 3¢ and other characteristic parameters can be found analytically
to obtain averaged stability for the model.

The description of the two dynamics with remarks to stability is done in Section 3.1.
In Section 3.2 the eigenvalues of the operator A are calculated and conditions are sought
so that all these values have positive imaginary part to fulfil the conditions of Proposition
A.30 for uniform boundedness of the expectation semi-group.

We will see that stability in average is possible if and only if the ‘unstable’ potential is
somehow ’weaker’ than the ’stable’ one, and we will obtain some more detailed sufficient
and necessary conditions.

In order to visualise the behaviour of the eigenvalues as functions of the intensity s,
this dependence is illustrated graphically for different choices of parameters and values
of s. This is described in Section 3.3.

3.1 Description of the model

Consider a point mass m sliding without friction along a line (with coordinates z)
in a potential V(2) = cz?,¢ € R. The movement of the point mass in time is then
described by the differential equation

d

mi(t) = %V(x(t)) = S2cx(t)
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2¢

With some initial conditions and w = € C we obtain the initial value problem

<A (t) :wzx(t)
{ z(0)=f, (0) =g. (3.1)

the solution to this problem is

sin (wt)

z(t) = feos(wt) +g yweC.

On the two-dimensional space of Cauchy data
C = {(io) rxg=2a(t), x1 =a(t) , xo, 21 € (C}
1

with standard basis we define as bilinear metric the energy form [.,.] by

GG = 2o 0 (52) G

1
= 3 (wzxoy_o—l— xly_l)

This definition is motivated by the fact that the energy in a physical sense
in time, since from (3.1)

N[ —

1 is conserved

0=i+wis A 24+w?2=0
= 0=i(i+w’2)+d(F+w)

1d , .
& 0:5%(|x|2—|—w2|$|2)
1
& = (|2’ +w?z|?) = const (3.2)

2
On C the initial value problem (3.1) is transformed into the Cauchy problem

1d T 0 <« T
= T
() 1= (1)

Define A := (2.32 _OZ) , the generator of the evolution semi-group connected with (3.3).

A is self-adjoint with respect to the energy form, since the following two terms are equal:

E)-G] = gt (59) ()

(@iwley_o + iwzxoy_l)

[()oa(")] = g e (5) ((onitem) )

P S 2
= W oY1 W T1Yo

N = N =

'One can interpret the term in equation (3.2) as the sum of kinetic and potential energy.
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Figure 3.1: The point mass in the stable potential.

STABILITY

As definition of stability for this system we will take the natural one coming from the
physical picture. We say that the evolution is stable if, for all times ¢, the position of
the point mass is limited by a fixed finite interval and there exists a maximal velocity.
In other words, the evolution is stable if there exist constants M, My > 0 such that
|z(t)] < My and |2(t)] < M, forall ¢t >0 (cf. Fig. 3.1).

Now let the potential V(z) jump between V;j(z) and Vi(z), which determine a
stable and an unstable dynamics respectively. For brevity call V; the stable and V5 the
unstable potential.

3.1.1 The stable dynamics

Let Vi(z) =c12? |, ¢4 > 0. Then w; = \/zmﬁ is real, the energy form

[(i?) (i?)] - % (wlzol* + |21

is positive and defines a norm ||.||; on the space of Cauchy data (Cy,[.,.];). Since the
energy norm of a vector is constant (cf. (3.2)) the evolution semi-group 7j(t) generated

by
f [0 s
P e? 0

is unitary (A is self-adjoint). Thus for the displacement and velocity we have

BOF < Aol + [mi) =t ZE©) Ve 0
and [#(0)F < @Haol +[o1]?)  =28(0)  Wi>0,
so that the evolution is stable, see Fig.3.1. This can also be seen from the fact that the
solutions of the initial value problem (3.1) for V = V; are the trigonometric functions
sin (wqt)

x(t) = fcos(wit) +gT’

so that |z(¢t)| and |Z(t)| are bounded uniformly for all times ¢.
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Figure 3.2: The point mass in the unstable potential.

3.1.2 The unstable dynamics

For Va(z) = &cqa?, ¢ > 0 the situation is quite different, here w = 7/ 2% is complex.

To simplify notation define w? 1= 22 = w? = «w?.

The energy form

(9. (2)] = Sttt

on the space C; of Cauchy data is an indefinite metric (cf. Appendix A.5) with one-
dimensional negative subspace.
The eigenvalues of the generator

0 <
<iw; 0
1

(with respect to any norm) are iw; and <iw, with eigenvectors (-, 1)" and (%, 1),

—WQt WQt

so that the eigenvalues of the evolution semi-group are e and e¥2'. There exists an

exponentially increasing eigenvector, the point mass will approach to oo (see Fig. 3.2) -
the dynamics is unstable. Again this can be easily seen from the solutions to (3.1) (with
w=iwy)
inh(wst
x(t) = fcosh(wqt) + gM
w2
Here we have hyperbolic functions, both |z(¢)| and |Z(¢)| tend to oo, unless of course

(g) is the eigenvector to the eigenvalue 1w, .

3.1.3 The expectation semi-group

Now assume the random process is 'turned on’, the potential V(z) jumps between
the two values Vi(z) and Vi(z) via a two-state continuous time Markov chain with
infinitesimal generator

Q::%(¢>1 1) , > 0.

1 &<l
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Then as described in Chapter 2 the generator A of the expectation semi-group £(t) =
eiA acting on the space C; X Cy is

(A O . idyg <idy
Al = ( 0 A, )+W( aidg  idg )
and since the operators A; and Aj; are represented w.r.t same basis (cf. Remark
2.23(1)), we get

e S i 0
wi i 0 &isx

< 0 i3 &t
0 Six siw? ix

A(s) =

3.2 Conditions for stability in average

Note that here in finite dimensional space we need not worry about the norm we choose
for the definition of stability, since all are equivalent. The expected evolution is stable
if and only if all different eigenvalues of the generator A have non-negative imaginary
part, regardless of what norm we have chosen (cf. Proposition A.30 ). Depending on the
parameters wi and w3 we want to find values of 3 for which this is the case.

To emphasise the relation between the stable and unstable dynamics (and to simplify
calculations) we define
wi

2
w3

4]

C2

7=

For r > 1 the ’stable’ potential V;(z) is a steeper parabola than for the "unstable’ one,
and for 0 < r <1 the converse is true. (see Fig. 3.3).

Using the programme 'Maple’, we calculate the four eigenvalues of A(x)

M) =i+ Ja+ 23, M(x)=ixs,/Jat+ 2/F 5.4
A3(30) = i+ \Ja &LVB, M(x) =ixe/a 2B '
with
o= &’ @%w%(l or) (3.5)
B=wi(l+47) 48 (1&r) (3.6)

3.2.1 Stable potential ’weaker’ than unstable potential

First let 0 < r < 1. From (3.5) and (3.6) we see that in this case o < <3 and
3> 0. Then

1 1
a¢>§w2\/5<¢>%2 = Im (\/04@?02\/5) > .
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0<r<l1 L<r

Figure 3.3: Comparison of the two potentials.

Hence for the imaginary part of Ay we get

Im(\y) = & 1Im (\/aﬁéwg\/ﬁ) <0 Vi >0,

the generator A(s) has an eigenvalue in the LHP for all ¢, stability in average is not
possible.
Thus a necessary condition for stability in average is

wi > w; e > e (N1)

3.2.2 Stable potential ’stronger’ than unstable potential

Now let r > 1. We divide the calculations into two parts: the cases g > 0 and
# < 0. The case § = 0 would require more detailed calculations of the geometric
multiplicity of the eigenvalues, since then some eigenvalues are the same, but this shall
not be of special interest here.

(1) Consider first the case when > 0, so that /3 € R4 . This holds for (see (3.6))

>0 x<

2 2
wi(l+r) .
——— =K .

8(7‘ 25 (3 7)

1)

and then we get

1
Im(Ay(30)) >0 & a¢>§w2\/ﬁ > o’

1 1
& §w§(r 1) > 5w \/w%(l +7)? &8 (r 1)
2
2 wal
< 2 el)
that is
Im(Aa(3)) > 0 & 3> gt K (3.8)
m e e —_— = . .
= =\ 20r=1) !
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Note that

eI L (Sl .
2(ral) © s(rel)

since

1 1
g<§(1+2r—|—r2) e 0< (e

is true, and that for # > 0 from Im(Ay) > 0 immediately follows for all other
(different) eigenvalues that Im(X;) > 0 ([ = 1,2,3) (cf. (3.4)). Thus we have

found a first sufficient condition for stability in average

r>1 AN Ky <x< Ky (S1)

and the more detailed necessary condition

r>1 A x> K (N2)

The upper bound K5 is motivated only by the constraint G > 0, so that, due to
continuity in ¢, one can expect stability in average at least for a slightly bigger
interval than [K1, K3).

For » > K, itis < 0, and a % **/3 are complex numbers with imaginary
parts £%2/|3|. We write these numbers in polar form and define

w ;
ati VBl = e, (3.9)
and thus a@i%\ﬂm = pPe?,

with the argument ® € (0,7) and the absolute value u?, where

2
w

pto= o+ S

= ut = 4 Wirel)] swr (3.10)

2

Note that p* > 0 because the roots of the polynomial in (3.10) are »* = w3 and

3? = &wir , whereas K32 > w? since (cf. (3.7))

L4 2r + 1% > 8(r 1)
& (re3)?>0

and s > K3 by assumption. Then we have (note the notation about the roots of
complex numbers and see Fig. 3.4)

iw/oe—l—i% 3] = Lpeiz (3.11)

+1/a @i% 6] = Fue 't (3.12)
And thus
Im(A(5)) = J«f—l—,usin(%)7 Im(Aq(5¢)) = %@,usin(%) (3.13)
Im(A3(5)) = s+ psin($), Im(Xi(5)) = e ©psin($) ’
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Figure 3.4: Illustration for equations (3.11) and (3.11).

Again we consider two cases:

(a)

As a first step we observe that, since |sin(%)| < 1, all imaginary parts are
certainly non-negative if p < s¢. That is with (3.10)

p<xept <t o X4t ui(rel)] ewr <t
wir

(rel)

& =: K3 (3.14)

As we already have the sufficient condition (S1), K < s < K3, (3.14) gives
a new condition only if K, < K3 or with (3.7)

wi(l+41)? wir
8(rel) — (rel)

o r?ebr+1 <0

&382V2<r<3+2V2

With the constraint r > 1 we get that Ky < K3 if and only if 1 < r <

3+2V2.

So far we have as sufficient conditions for stability

(1) 1<r<34+2v2 A K| <x<K;
(2) 3+2V2<r A Ky << Ky

The case p > s is more complicated to deal with.
The calculation of the argument ® in (3.9) can be split into two parts: a > 0
and a < 0. We have for a > 0 (cf. Fig. 3.4)

$® = arctan (M)
200

2 1 2 1)2
— arctan “2\/8%2(r@ Jowlr+ DB ¢ o, (3.15)
wi(rel) <25 2
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Figure 3.5: The argument ® for « > 0.

and for o < 0 we get (cf. Fig. 3.5)

o T arct ( 2| )
= — +arctan
2 w2/ ||

23 2 1
— T {arctan . owylr o) Er) (3.16)
2 way/832(r &1) wi(r + 1)2 2
It is (cf. (3.5))
2
a>0&x< 72(7‘ el) = Ky. (3.17)

For 1 < r <3422 this case is only necessary studying when K3 < Ky, i.e.

2
wir 1,
< = <1
(rel) sz(r )
o rPedr+1>0

& r>24V3 V r<2aV3.

Ks< Ky, &

For 34 2v2 < r we require K, < K4, i.e.

wilr+1)2 1

Ky< Ky & 22— < W2(rel

2 < B4 8(r 1) < gwalrel)
& 3r2e10r+3>0

2
& r>3\/r<§.

With regard to (3.13) the requirement for stability is
» S sin (%) >0 < Lsin (%) < 1.

For s > max(Ks, K4) we have p/3 > 1 with lim,,. p/> = 1. However,
we have also from (3.16)

. ) T

lim —=—

x—o0 2 2
thus lim,,,. sin(®/2) = 1 as well. In order to find further sufficient condi-
tions one will have to investigate the term p/3¢sin(®/2) in more detail; we
will not do this here.
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3.3 Summary and graphical illustration

So far the following cases have not been investigated:

(1) 1<r<24+3 1 K3 < 3 ,a <0
(2) 24+V3<r<34+2v2 :Kz3<x<Ky ,a>0
Ky < » , oo < 0
(3) 3+2vV2<r Ko< %< Ky ,a>0
Ky < » , oo < 0

and there has been found as

e sufficient conditions:

(1) 1<r<34+2v2 A K;<x<Ks
(2) 3+2v2<r A Ky << Ky

e necessary condition:

r>1 A Ky <

with the constants

Wl _ w2r _ w3 (147)2 -] Wi - JWE(r-1)
r= é 71(1 — 2(7»2_1) 71(2 - 52;(7,_1) 71(3 — ﬁ 71(4 — 2#

For various values of the parameters w? and w3 we used the mathematical software
"Matlab’ to calculate the eigenvalues for a sequence of choices of 3 and illustrate the
results in graphs. A pseudo-code of the programme and some graphs for some values of

w? and w? can be found in Appendix B.

The numbers behind 'omega? =" and omega3 =" (see Figures B.1-5) are the values of

the parameters w? and w? respectively which are valid for all graphs in that particular
figure. The caption ’kappa=" at the y-axis show the values of s for the respective
graph.

For r > 1 are values of the constants Ky, Ky, K5 and K4 printed on top of the second
column. The eigenvalues with non-negative imaginary part are shown as ’o’, wheres as
an ’x’ stands for an eigenvalue with negative imaginary part.

The values wy = 1 and r = 0.8 were chosen to produce the graphs in Fig. B.1.
One could investigate further the reason that all eigenvalues for s > 1 apparently have
zero real part (similarly for » = 1.2 and » = 1.6 in Fig. B.2). In accordance with the
analytic results, there is always one eigenvalue with negative imaginary part, though
this value seems to increase with increasing s«.

The graphs in Fig. B.2 and B.3 visualise that for smaller values of r larger values of
» are needed in order to ’lift’ the eigenvalue in the LHP up into the UHP.

The sequence of graphs in Fig. B.4 with values of s up to 95 suggests that the
averaged system is stable for large s, though it has not been shown analytically yet.

Note further that the picture of the four eigenvalues is symmetric to the imaginary
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axis, one pair almost on the real line and the other pair with imaginary part approxi-
mately 2s¢.

The conclusion we can draw from investigating the question of stability in average on
the example in this chapter is summarised in

Hypothesis 3.1
(1) The necessary condition for stability in average for general systems with a 2 -state
Markov chains includes some condition on the relation between the parameters of
the stable and unstable system, here it is the ratio r of the slopes of the potentials
which needs to be larger than 1.

(2) We can not expect the values of s sufficient for stability to be small. This is
important to know in order to apply methods of Perturbation Theory.

(3) Since lim,_,;4 Ky = oo in equation (3.8) it is even the case, that » needs to be
very large if the relation mentioned in (1) is almost 1.

An interpretation of the result w.r.t. the Conjecture 1.1 is given in Chapter 6.
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Chapter 4

The wave equation on the finite
string with random boundary
conditions

Here the question of stability in average is studied for the wave equation
Tuamc - Q(x)utt

on the finite string (z € [0, N]) with homogeneous tension 7', continuous and positive
density function p(z), and randomly changing boundary condition at # = 0.

We assume Dirichlet condition! u|y = 0 at # = N, and at # = 0 the Rubin
condition

uy Sh(tulo=0 ,h(t) €R.

Let h(t) jump between the values hy > 0 and hy < @%V , corresponding to a stable and
unstable dynamics respectively, in a sense to be defined in the beginning of Section 4.1.
Again the jump process shall be realised via a 2-state continuous-time Markov chain
with exponentially distributed sojourn times with intensity .

Since the main interest does not lie in the wave equation itself we simplify the calcu-
lations and study a ’solvable model” in which T =1 and o(x) = p? > 0 are constant.
However, many ideas employed and expressions obtained can easily be modified to suit
the case of a general density function 0 < v < p(z) <, < oo bounded below and above
on [0, N].

In Section 4.1 the analysis of the two different systems for A = hy > 0 and
h=hy < ¢>]L\7 is given. First some facts and definitions are listed which hold for the
general case. In the following subsections all the calculations of eigenvalues, eigenvectors,
etc. are done as well as necessary definitions are given - first for the solvable model in
general, then for both systems with h = hy and h = hy in particular.

Some of the relations between the domains, eigenvalues, etc., of the generators of
the two dynamics are elaborated in Section 4.2. These relations are the basis for the
further investigation of the properties of the generator A of the expectation semi-group
in Section 4.3, especially the spectral properties. Here we search for conditions on 3¢

! One distinguishes between Dirichlet (u|x =0), Neumann (u'|x = 0) and Rubin condition ( au|y +
bu'| v = 0), see for example Strauss[33].
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C/\ U(N,t) = Ox
0 — >

Figure 4.1: The finite string.

in dependence on the parameters hy, ho, T, N and p to obtain stability in average, i.e.
an uniformly bounded expectation semi-group w.r.t. a particular norm. This norm is
constructed in Section 4.1 by means of the canonical symmetry defined in the theory
of spaces with indefinite metrics (see Appendix A.5), and it is shown that this norm is
suitable to measure stability.

This situation is not as simple to deal with as the one-dimensional movement of a
point mass described in the previous chapter. Here the operators involved act on a
Hilbert space of infinite dimension, the generator A of the expectation semi-group is of
general type: unbounded in both directions and not symmetric. Additionally it is rather
difficult to make use of the results of Perturbation Theory. The reason is the strong
condition for stability, i.e. that the spectrum be completely contained in the complex
UHP, together with the asymptotic behaviour of the spectrum of A.

A numerical approach is realised in Section 4.4 to approximate the spectrum of A.
As described in Mikhlin[23], the Galerkin method provides a procedure to approximate
the eigenvalues of a linear operator. Here we will use this method to visualise how
the spectrum of A looks like and how it changes in dependence on 3 and the other
parameters.

The results of the numerical approach suggest that stability is in fact possible.

4.1 Description of the model

THE FINITE STRING

Consider a stretchable string of finite length N with density p(z) fixed at the right
end and a ring (idealised, i.e. without mass) attached to the left end. This ring shall
slide along a rod in such a way that the slope of the string at & = 0 is proportional to
its displacement. Also let the string be under tension 7', so that any displacement from
equilibrium results in an oscillation when released. Introduce a coordinate system (see
Fig. 4.1) and let wu(z,t) be the displacement of the string at position z and time ¢.
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STABILITY

Having in mind the model of the point mass in a potential, we shall mean that the
dynamics of the string is stable if, released from its initial position w(z,0) with velocity
ui(z,0), the energy term

N
S(t) = / ugl? + o) el d,
0

is uniformly bounded at all times, that is if there exists a constant M > 0 such
that |S(¢)| < M forall ¢ > 0. Note that if foN |uy|*dz is bounded then the length of
the string is bounded. This means that the displacement of the string is also bounded
since the string is fixed at & = N, so that the oscillation is restricted to a bounded
region.

The term S(¢) can be interpreted as the sum of kinetic and potential energy of the string
(cf. Strauss[33]), in the following we will call it physical energy or simply energy of the
string.

Unlike in the previous example, here we need to choose the norms on the considered
spaces in such a way that stability in average follows from the fact that the expectation
semi-group is equi-bounded. This will be done and justified in the Subsections 4.1.3 and
4.1.4 about the stable and unstable dynamics.

4.1.1 The case of a general density function

THE CAUCHY PROBLEM

The dynamics in time of the string (if we assume that any displacement is of small
order compared with the total length N of the string) is described by the wave equation
(cf. Strauss[33])

Tuz: = o(x)uy (4.1)
with initial conditions
U($, 0) = f($) 9 ut(xv 0) = g(x)v (42)

and some boundary conditions at * =0 and z = N . Since the end at & = N shall be
fixed at all times we get as one condition u|y = u(N,t) =0 for all ¢. For the second
condition at z = 0 the proportionality of slope and displacement translates to, with

heR,
up <hu|, =0 Vt>0. (4.3)

Introducing the Cauchy vector
U(t) = (Z?) = (Zt(é’;)))
the wave equation (4.1) with initial conditions (4.2) can be written as the Cauchy problem
Ld (u\ . 0 <l U
z%(ul)_l(@f_@% 0)(“1) (4.4)

(0 )]w=(7)

41




where the boundary conditions are now encoded in the domains D(L) of the differential

operator
I_ T d?
-~ o(z) da?

and in the domain D(A) of the infinitesimal generator

A:i(O@l)
L0

of the evolution semi-group connected with (4.4).

Remark 4.1

Note for the following that for densities 0 < v < p(z) <, < oo bounded below
and above the spaces L3 ,[0, N] and L5 ;/,[0, N] are isomorphic to L3[0, N], the same
holds for the corresponding Sobolev spaces. Thus in the following we will not distinguish
between these spaces.

THE DOMAINS OF THE OPERATORS

For the domain of L it is easily seen that
D(L)={yeW;: vy chylo=0, yln=0}.

The condition on the boundaries do make sense since y as well as y’ are continuous. (see
Theorem A.38(1)). We equip D(L) with the weighted L£;-inner product with weight
function p(x), then L is a symmetric operator (see Appendix A.4). To obtain a suitable
inner product for the domain of A observe that from (4.1) follows

0=Lu + Ut
f=4 0 = <LU7 ut>g —|— <utt7 ut>g
1d
0= §£(<Lu, u)p + (U, ut>g).

That is, in the notation of Cauchy vectors, the following expression is conserved by the
evolution

%((Luo,uo>g+<u1,u1>g) = (/ @—uOuOJrQ( )il dw)

(uohmaly + | " o)l + g<x>|u1|2dx) ,

N~ N = N =

ie. %(<Lu0,uo>g—|—<u1,u1>g) - (h|u0| |0+ |(u0)x|2—|—g(x)|u1|2dx).(4.5)
5)

We use the right hand side of equation (4 define the energy form (which is not

to
necessarily positive) for Cauchy vectors U ( ) and V = ('Ul)

(9 ()] =3(owre [, an

42



and the space C’ of Cauchy data with finite energy

c/;:{(Z?) :UOEW%,mEﬁg}.

For the domain of A we get

D(A) = {Uz (Z?) eC' :ugeD(L), AUGC’} =

= {(uo) 2UOEW22, Uy EVV217 (uo)y Shuglo =0, ulny =0, u1|N:0}.

Uy

The condition uy|y = 0 follows from the requirement that w|y = 0 since: 0= w|y =
uy|n follows from wu|y = 0. We define the space

C:{(zo) :U()EW% , up € Lo, UO|N:0}7
1
then A maps D(A) onto C since
0 &1 up) [ Sty
(o) ()= (i) <@

and w.r.t. the energy form the closure of D(A) is C (refer to Appendix C.1.1 for more
details).

Remark 4.2
In order to use the left-hand side of equation (4.5) for calculating the energy form of two
vectors U,V € C, it is only necessary that one vector be in D(A). Since then, w.l.o.g.

let U= (%) eD(4), V= (1) eC (note that volx =0)
N [
U, V] = (huoﬁb—l-/ (uo)x(vo)gg—l—pzulﬁdx)
0
N N
(huomo )Ty & [ (oot + pzulv—ldx)
0
N 2 1 & 2
() 7 (o) o ptum)
1

= §(<Lu07 vo) 2 + (U1, U1>p2).

N = N~ N

A is symmetric with respect to the energy form, as for U,V € D(A) we have

[AU,V] = l(<L(<:n'u1), voYp + (i Lug, v1>g)

N | — DN

(<u1, iLvg), + {uo, L(@mm) — [U, AV]
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THE RESOLVENT OF A

Let a € C be in the resolvent set of A, and R* = (A<« ide)™! the resolvent of

?o'r (Z?) € D(A) and (f) € C we get

g

w(0)=(0) = (72))=0)

uy = 1f + taug
o { Cortun @ an 47)

So to find (Z?) we need to solve the boundary value problem

(L&a?)y = (sig+af)
Yz <hylo =0
ylv =0
This is done with the help of the Green’s function G(z,&) (refer to Appendix A.4). We
get for ug in (4.7)

N
w= [ G0l [#igle) + (€]
0
or with the corresponding integral operator K< of Hilbert-Schmidt type we have
up = K¥(sig+af) N w=if +iaK¥(sig+ af).

Finally we obtain an expression for the resolvent R®
f oo (S aK®  &iK? f
< =[A d = 4,
u (g [ &aide] g i+i02Ke aK® g (4:8)

SELF-ADJOINTNESS

If L is positive the energy form [.,.] in (4.6) is positive, and A is even self-adjoint

since in that case for (A <iide) and (A +¢ide) hold
.. up\ f +iug Siuy = f
(A+iide) (u1) = (g) = { iLug & iug = g

N { ulzif:l:uo
(L+Dug =<igFif

As for positive L the resolvent (L + 1)7! exists and is defined on the whole of L3,
the resolvents (A £ id¢)™! exist on the whole of C, the symmetric operator A is
self-adjoint with Theorem A .4.

THE SPECTRUM

The spectra of A and L are closely connected. E.g. let A be an eigenvalue of A,
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then there exist U = (Z?) € D(A) such that
<

() =2()

i.e. A? is an eigenvalue of L. Conversely, simple calculations show that if A is an
eigenvalue of L (positive or negative) with eigenfunction wuy then VA and </ are

@iul = AUO
iLUO = /\u1
Uy = ZAUO
< { LUO = A2UO

eigenvalues of A with eigenvectors (#;“) and (_?fuk) respectively. Since L is
symmetric its eigenvalues are real, thus the eigenvalues of A are either real or purely
imaginary, and further, the spectrum of A is symmetric to the real and to the imaginary
axis. Also, the spectrum o(A) of A is discrete, due to the fact that the spectrum o(L)
of L is discrete. With Remark A.14 follows now, that the system of eigenvectors forms
a complete orthogonal set for C.

4.1.2 A solvable model

From now on we simplify the calculations and consider a ’solvable model’ by setting
T =1 and p(z) = p? > 0, we obtain the Cauchy problem

1d g s 0 = g
z%(ul)_l @p%% 0 (U1) (4‘9)
(o)1= (5)
uq =0 g

EIGENVALUES AND EIGENVECTORS

We saw that in order to find the eigenvalues £A of A, we need to find the (real)
eigenvalues A% of the Sturm-Liouville problem

1 d? 5
y <hylo=0 }
4.11

Consider the three cases:

(1) A2=0
A general solution for the differential equation (4.10) is

y=oax+p5,

the boundary conditions (4.11) give

1

Thus A =0 is an eigenvalue of L (and then of A) if and only if h = 4. We
will not investigate this special case further.
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2) A*>0,2>0
A general solution to (4.10) is

uy = acos(Apz) + Fsin(Apz),
(4.11) gives
g = Aipoe A B =&acot(ApN).
Thus A? is an eigenvalue of L if and only if A > 0 solves

A
tan(ApN) = @7”. (4.12)

Since tan(z) is periodic equation (4.12) has countable infinitely many solutions
Asy s € N, for all h € R. The eigenvectors of A for the eigenvalues A, and
A_s = &\, are

1 Ny
D s and s ,
uS uS

sin(Aspa) , « € [0, N]. (4.13)

with

us(z) = cos(Aspz) + /\h

S

For the energy forms of the eigenvectors we get

+-u,\ [(Eu, 1/1
() (5] =3 Gt oma) =i

and the eigenvectors are orthogonal to each other, since for u; # u; we have

1 1
mus mus . 1 1
(5 (5] = 3 (otam )

INOW
= 3 (/\—t—l—l) (us,uty, =0

Note that the eigenfunctions of L are orthogonal in Ly, (cf. Appendix A.4).

(3) M=&l2<0,l>0
A general solution to (4.10) is

u(z) = acosh(lpz) 4+ Fsinh(lpz),
and (4.11) gives
g = %04 A B =sacoth(lpN).

Thus «{? is an eigenvalue of L if and only if / > 0 solves

tanh(lpN) =

SS

(4.15)
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(i) h>0 (iif)

() 0>h>—%F% oo Tl
. tanh({pN)

(iii) b < —

2=

Figure 4.2: The negative eigenvalue of L.

The graphs of the functions in equation (4.15) are sketched in Fig. 4.2.
Since

d
Etanh(le) ‘120 =pN

there does not exist a solution to (4.15) for h > <= , then L is positive definite
and A is self-adjoint. But for h < ¢>]LV there exists exactly one solution g > 0 |
L has one negative eigenvalue with eigenfunction

h
eu(x) = cosh(upz) + — sinh(ppz) , x € [0, N]. (4.16)
jp

and ¢p and <ip are eigenvalues of A with eigenvectors

1 1
ey ey
respectively. For their energy forms we have here (in accordance with Proposition

A.55)

+1e +1e 1 1
C2)- Co)] =5 Gt o) <o

whereas

[(%eﬂ)’ (%eu)] - % (%@%eﬁg + <euveu>g) = (eur€u)e > 0.

€p € H

However, the above eigenvectors are orthogonal to all of the eigenvectors for real
eigenvalues since (e, us), =0 and

[(i%eu) (i%u)] - % (( + l(@ﬁ)eu,i%u% + <6mus>g) — 0

ey Ug I 1A
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THE (GREEN’S FUNCTION OF [

To calculate the Green’s function needed for the resolvent we follow the steps of the
calculation of the resolvent (L < A)~! in the general case done in Appendix A.4. The
functions /(z) and r(z) are now

l(z) = cos(apz) + o sin(apz) (4.17)
ap
r(z) = cos(apz) Scot(apN) sin(apz) (4.18)
with Wronskian
1 1
W(l,r)|y=0= ‘ b sapcot(aph) |~ &h sapcot(apN) = A. (4.19)
Then the Green’s function is
1
Ga($7€) _ { h+apci)t(apN)§($)r(€) ) 8 i z 2 3 2 % (420)
h4ap cot(apN) (f)f‘($> ,0<8<a <

4.1.3 The stable system

As it will be seen in the following, the dynamics determined by the Cauchy problem
(4.9) is stable when the value of h in the boundary condition at z = 0 in (4.3) is

positive.? So let h = hy > 0, and define the differential operator L; = @/}%% with
domain

D(L) ={yeWj:y ©hiylo=0, yln =0},

and the infinitesimal generator 4y =+ (Lol _01) with domain

U
D(Al): {( 0) 2UOEW22, Uy EWQI, (Uo)x©h1UO|0:0, UO|N:07 u1|N:0}.

Uy

THE ENERGY FORM AND STABILITY

The energy form [.,.]; (cf. (4.6))

G (), =3 (bt oo ) o

is positive and defines a norm ||.||; on the space
g 1
Cy :{(u) :U()EW2 , up € Lo, UO|N:0}
1
of Cauchy data with finite energy norm. It follows immediately that the norm |.||; is

suitable to measure stability. Whenever an evolution semi-group is uniformly bounded

2This actually is true for h; > —% . However, we choose to treat only the case h; > 0, because
although that case is qualitatively similar to the case —% < h; < 0 the calculations are quite different,
and, besides, we can always decrease the distance of h; > 0 to the ’critical’ value —% by increasing
the value of N .
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Figure 4.3: Approximation of the eigenvalues of A, .

w.r.t. the norm ||.]|; then the physical energy

st0= [ oo+ el < [ (). ()]

of the string is certainly uniformly bounded for ¢ > 0 since hy > 0, in fact e
unitary, since A; is self-adjoint. Thus A = hy determines a stable dynamics.

1At is

THE EIGENVALUES AND EIGENVECTORS OF A;

All the calculations have been done before, so here we only give the necessary defini-
tions and certain estimations.

Observing the graphs of tan(ApN) and @2—? in the variable ApN (see Fig. 4.3) we
get an approximation and the asymptotic behaviour of the positive solutions Ay, s € N,

of

A
tan(ApN) = @h—”. (4.22)
1

We get for the eigenvalues A; and A_; = <A,

AspN =2 n o0 A A_pN = 2-lroe, (4.23)
with

£s € (075) SEN, A Slig)logs =0,
and

1 2 1 As
tan(AspN) = tan(g +e,) = ©cot(es) = @N—hl ( Sj T -|_55) = @h_l’o
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An estimation for ¢ is

Nhy < 2N hq < Nhy

<t = 4.24
0 < e, < tan(ey) 252 Bolry e, T 28l ~ (sel)r ( )
and for |\
|s|m
1 [2]s|el < N
Np 2 > ( C|]\7p) > (Np)

For the eigenvalues A; and A_; the eigenvectors of A; are

a1 1
Us := (Msus) and U_s:= (M—Sus) , seEN
Us Us

resp. with ug(2) := cos(Aspa) + A L sin(Aspx) .

THE NORMS OF THE EIGENVECTORS

For the energy norms of the eigenvectors Uyy, s € Z* we get (for the calculations
refer to Appendix C.1.2)
p*N Nhi+1 _ p?N

h > 4.26
> T 2 (4:26)

IUllF = 1U=s]l =

Note that the norms of ||Us||} are monotonically decreasing with increasing s > 0.

THE RESOLVENT OF A
From (4.17) and (4.18) we get for a € C not an eigenvalue of A;
ha
li(z) = cos(apz) —|— — sm(apx)

r(z) = cos(apz) C}COt(O&pN) sin(apz).
Then we have from (4.19) and (4.20)

h1+apcot apN)l ($)T‘(€) 9 0 S € S g S N : (427)
hl—l—ozpcot osz (f)f‘($> 3 0 S g S T S N
Ky () / G5, () de,
and from (4.8) the resolvent of Ay defined on C;
f R oKy K5\ (f
o =[A d = . 4.2
Qi (g (A1 &aide,] g i+ 02Ky oKy g (4.28)
4.1.4 The unstable system
The situation is quite different when h = hy < <+ . Then the differential operator

Ly = @/}1—2% with domain
D(Ly)={y e W3 :y ©haylo=0, y|lv =0}
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Figure 4.4: Approximation if the eigenvalues of A .

has got one negative eigenvalue <u? (cf. Section 4.1.2.). The generator Ay = ¢ (]?2 _01)

with domain

()
D(AQ) = {(u ) tUg € W22, Uy € WQI, (Uo)x @h2u0|0 = 07 UO|N = 07 U1|N =0 }
1
of the evolution semi-group €42 corresponding to the Cauchy problem (4.9) has got the
two complex eigenvalues iu and <ip, so that e*2? itself has got the eigenvalues ™"
and e*'. Thus there exists an exponentially increasing eigenvector, the physical energy
S(t) of this particular state will approach to infinity in time - the system is unstable.

THE EIGENVALUES AND EIGENVECTORS OF Aj

(1) The real eigenvalues 7, > 0 and 7, = &7, (s € N) of Ay are given by the
positive solutions of

tan(tpN) = @7};—'0 (4.29)
2

Again observing the graphs of the functions sketched in Fig. 4.4, and with

d p d TP
—t N =pN>c—=—|c—
dT an(Tp )"TIO p > h2 dT( h2) ‘T:O

we get as an approximation for 7y

TspN = %ﬂ' Sds N T_4pN = ¢>QST+17T + 4, (4.30)
with

bs€(0,5),s€N, A lim 6, =0,

5— 00
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and also

tan(rspN) = tan(g &d,) = cot(ds) = @L (28; 177 (:)55) = @7;_’0
2

Hence we can estimate &, by

Nhy Nhy
0 < 3, < tan(d,) = < : 4.31
<9 < tan(,) —25;'171' &6, T ST ( )
and |74
1 (2]s|+1 < 2]s[+1) < (s[+1)
72| = Ny ( 5 7T¢>5|5|) { N ﬁNﬁ Ne (4.32)
Z 'Np

The eigenvectors to 75 and 7_; are

L L
Vs i= (”S US) and Vos = (”—svs)
/US /US

resp. with wv,(z) = cos(rspz) + fs_2p cos(Tspx) .

(2) The complex eigenvalues iy and <ip of Ay are determined by the unique solution
of

tanh(upN) = <:>’Z—p , 1> 0. (4.33)
2

As a rough estimation we have (cf. Fig. 4.2)
PINY, h
L > tanh(upN) = <42 = p< o2

where the larger |hy| or smaller p are, the better is the estimation.

The eigenvectors for ip and <ty are resp.
1 1
Uy = (%6“) and V_ = (;eu)
6M eu
. _ h .
with e, () = cosh(upz) + ;L sinh(upz) .

THE ENERGY FORM

The energy form

()] = b [

1
is an indefinite metric: the vector (Mg“) has got the negative energy 'norm’

1, Le 11 1
[(MOM)’ (MOM)L B §E<L2€W€u>p2 = <:>§<€M€M>p2 <0
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For some details on the theory of spaces with indefinite metrics see Appendix A.5.
It is checked easily that the orthogonal complement (w.r.t. the energy form [.,.]2) of

1
the one-dimensional subspace X := span(ﬂg“) is

U
E[J-] = CQ[@]E = { (u?) Up J_L27p2 6#«} .

Ly is positive on XM so that [.,.]o is positive and defines a norm |[.||2. Hence

(Ca,[.,.]2) is in fact a Pontrjagin space with an one-dimensional negative subspace X .
The [.,.]z-orthogonal projection onto ¥ is

(uo) n 1 ((uo,e@pzeu)
w) 7 NelE 0

so that for the canonical symmetry J we get

7 (uo) n (uo) e 12 ((uo,ewpzeu)‘
Uy Uy leullz, 0

The positive inner product [.,.]; = [J.,.]2 defines a norm ||.|]|; on Cy, which we will use
from now on.

THE NORMS OF THE EIGENVECTORS

The ||.||7-norms of Vis, s € Z* are (see Appendix C.1.2)

2 2

) ) , PN . Nhy+1 _ p*N
S -5 - S —_— h > .

||[ ||J ||[ ||J ||[ ||2 2 2 27_52 =7

(4.35)

The above inequality is true, since
hy < &t = hy(Nhy+1) > 0.
And for the norms of W, and ¥_ we get

IN Nh 1
P ohy 2+ ‘

Uy|f =

(4.36)

2
As one expects, the norms are positive since u% > 2—2 and then
2

2 2 2

p?

"3

VL] >0 <

& p?N > (Nh3+ hy)
& hy <0 (true).

It also holds the estimation from above
2 2 2 2
p°N  Nhy+hyp p
& =
2 2 h% 2hq

15 < (4.37)
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THE RESOLVENT OF A,

From (4.17) and (4.18) follows for o € C not an eigenvalue of A,

h
l2(x) = cos(apz) + —2 sm(apx)
r(z) = cos(apz) C}COt(O&pN) sin(apz).
Then we have from (4.19) and (4.20)

h2+ozpcot apN) (ac)r(f) , 0<a < f <N (4 38)
hz-l—ozpcot apN) 12(5)7‘($) ) 0 < g <a< N )
Kg )= p / GS(. &)d¢,
and from (4.8) the resolvent of A, defined on Cy
f o (] aKg  SiKS\ ([ f
2\, )= d = . 4.
% (g Areaide] T\ ) =i pintig arcy )\ (4:39)

THE DECOMPOSITION OF (g

Despite the fact that C; is a Pontrjagin space, a more natural decomposition of Cs
is into the two A, -invariant subspaces

I_ :=span (¥, ¥_) and I} :=Cy[a]ll- =span{V;:s € Z*},

where Il and II_ are orthogonal both w.r.t [.,.]2 and [.,.]; (this follows from (4.40)
below). Define P_ the orthogonal projection onto Il and Py :=id¢, ©P-. The Py
are orthogonal projections w.r.t. both forms [.,.]; and [.,.]o. Also we have the property

(U)J_H Sugle, ANuy Le,.
(1

Since J =1 in Il itis [.,.]2=1.,.]; on Il4, whereas otherwise the following holds
W, W]y =[W,U_], A [WU_];=[W, U]y VIV €C, (4.40)
And because V; L II_
W, Vils =W, Vi), VW €C

Restricted onto 14 ND(Az) the operator Aj is self-adjoint for the same reason as A;
is self-adjoint on D(A;), and the set {V,:s € Z*} is a complete and orthogonal set for
IT4 . The restriction As|_ is a two-dimensional operator which has the matrix form

0 «i
Azl = .
2l (@W 0 )

w.r.t. the more convenient basis B for II_

o={(5) ()}
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Aglr_ is anti-hermitian w.r.t. [.,.]; (see Appendix C.1.3), that is

e e—

<A2|H_)* = <A2|H_) = Ao |n_.

Remark 4.3
The effect of changing the inner product is that A; looses its property of symmetricity
on a two-dimensional subspace.

STABILITY
Now we show that the norm ||.||; is suitable to investigate the question of stability.
If for a certain vector function (t) the ||.||;-norm is uniformly bounded for all times

t > 0 then the physical energy S(f) of the string is bounded as well. To show this
assume

IM >0 : | UM)EZ <M V> 0.

Decompose the Cauchy vector U(t) for given ¢ > 0 into two mutual orthogonal compo-
nents, that is

Ut = Uy (1) + U_(1) = (“0) + (“(t)e“) La(t),b(t) € C,

Uy b(t)e,
where Uy (t) € I14 and U_(t) € I1_, then certainly for all ¢ > 0
WA = U2 < M and [U_@)]3 < M.

(1) First we verify that
N
aM; > 0:8,(t) = / |(u0)z|* 4 p?|ui|*dx < My Vi > 0.
0
We have
N
h2|UO|2|0 —|—/ |(UO)$|2 + p2|u1|2dac S 2M Vit Z 07 (441)
0

but, as hy < 0, it could happen that both terms above in (4.41) are unbounded
even though the inequality is fulfilled. However, this is not the case, as it is shown
in the following.

U4 (t) can be expanded w.r.t. the set {V,:s € Z*} such that

with

U013 =D la@P|[Vill3 < M < oo.
SEL*
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From fTN < ||Vs]l3 follows that
2M
a(®)* < -
5;%; p2ZV
Thus we get, since the sum }_ . # converges ( |15| = o(1/]s])),

2

halluol®| _, = |hal

> auit)o-

SEL*

il 3 Jn(F 3 =

SEL* SEL*

2M || 1 .
=M.
— pQZV’ EE: |75|2

SEL*

IA

N
Sy(t) = /0 [(wo)o|® + p*lur|*dw < 2M + |ho||ug|*|o < 2M + M =: M,

is uniformly bounded for all ¢ > 0.

(2) The same is true for the part in [1_. We want to show that
N
I > 0550 = [ [al0Pllel + b e, do < My Ve 20
0
It is
1
V=013 = 5 (21a( + b)) (e ey <M V220,
so that especially
2

la(t)]? < i_]\g<emeu>p2 A (b)) < 2M(eps e,

and therefore

Nam 2, 2 2
S_(t) < <€W€M>p2/ " (en)s|” + p 2Mle,|*dz =: M, vVt > 0.
0

Hence we get the desired result that

N 2 2
50 = [ 1)+ ave), P+ a0 +b0)e, s

IA

N
2/0 |(wo)al” + [a(®) *[(ep)al® + p* (Jur|* + [b(1) le,|*) d
< 2(S4(O) 4+ 5-(t) <2(Mi+ M) V>0

is bounded uniformly.
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4.2 Some relations between the generators of the stable
and the unstable dynamics

4.2.1 The domains

The domains D(A;) and D(Az) are both dense (w.r.t. to the respective forms)
subsets of the same space

C:=Ci=Cy = {(ZO) 3UOEW21 , Uy € Lo U0|N:0}.
1
The intersection of D(A;) and D(Aj3) is the set

DO = D(Al) N D(AQ)

Uo

= {(u ) CUug € W22, U € WQI, (UO)I|0:U0|0:O7 UO|N:07 U1|N:0}7
1

and restricted onto Dy the operators A; and A are equal

Ag = A1|D0 = A2|D0

and certainly symmetric.
In Appendix C.1.4 are given the calculations to verify that
UeDy, Ve D(Al) = [A()Uv7 V]l = [U, A1V]1
and UeDy, VeDA) = [AU,V]=1U, AV]2.

So, when we denote with Aj the adjoint of Ag w.r.t. the positive metric [.,.]; and with
A$ the adjoint w.r.t. the indefinite metric [.,.]2, it follows

Ay C A, AN Ay C AT

The difference between A; and Ay is, basically, that both operators are self-adjoint
extensions w.r.t. different inner products. The closure of the domains under the respec-
tive forms is the same space C, considering the space C as a set of vectors without any
metric structure.

4.2.2 The energy forms

The energy forms [.,.]; and [.,.]z (also [.,.];) are defined on the same space C,so it is
possible to compare them. From (4.21) and (4.34) we immediately get for (Z(l)) ; (UO) €

C "
) GO, = 3 e e [(2)- (2],

and that the forms coincide on the intersection Dy of the domains. Also does follow
[U,Uly > [U,U]z. With regard to Lemma 2.26 it would be of particular interest to
obtain equivalence, that is there exists gamma > 0 such that ||[U|}; < 7||U]|;. Since
the norms ||.||y and ||.]|; are equivalent on the finite-dimensional subspace II_, it is
only required to show above inequality for all U € 11, .
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4.2.3 The eigenvalues and eigenvectors

From (4.23) and (4.30) we get that for s € N
|As—|—1 ¢>7—s| - |A—s—1 ¢>7——s| - |€5 + 5s|7
and in fact with (4.24) and (4.31)

2N hy Nh2
(2sel)r  s7

|/\5_|_1 C}T5| = |/\_5_1 C}T_5| < (hl C}hz) (442)

>1|2

Thus the differences of the eigenvalues approach to zero for |s| — oo, the same holds
for the energy norms of the differences of the eigenvectors Uy <V, and U_,_1 &V_;,
that is

lim (U &V =0,
lim [|[U_s_1 ©V_4||} =0,

lim [V Vil = lim (224 U s Vi3) =0, |
lim ||U_sey Vo2 = lim (A’wihlﬂw_s LeVLR) =0

5—00 s—o0 \"—s—1li—=s

For the calculations refer to Appendix C.1.5.

4.2.4 The eigenvector expansions

The sets of eigenvectors U = {Us; : s € Z*} and V := {V; : s € Z*} U {V;,¥_}
both form complete orthogonal sets for the space C (w.r.t. different inner products of
course). Therefore we can expand each eigenvector U € Y w.r.t. V and vice versa each

W eV wrt. U, that is

Us = Y Vit b, +b;0_, s€Z” (4.44)
tEL*

Vi = ) &, teZ (4.45)
SEL*

U, o= > iU (4.46)
SEL*

Vo= ) iU, (4.47)
SEL*

Clearly we have for the coefficients

1 1
Ci = [US7 ‘/t:l [U57 ‘/7,‘]27 (448)
i aE
1 1
+ _
R T T (49
1 1
b = U, W]y = Uy, W15, 4.50
T Ve U=l = e Ve Tl (4.50)



and

1
di = [VtvUS]lv
' U7
1
¢j = —[\II-I—st]h
U3
v AN
s = 7 12 —y Us]l-
U3

(4.51)
(4.52)

(4.53)

In order to calculate the coefficients we need to know the products [Us, Vi]i/o
and [Us,W4]y, and for these we need to have some expressions for the products

(U)o, €u)p and  (uyy[, V), since then for st € Z™ we get

(a)

[\II-I-v US]Q

1
(l/\ N) <¢);126M7 u|s|>p2 + <€M7 u|s|>p2

(1 + Z/\ﬁ) <€M7 u|s|>p27

1
2
1
2

and

hz@hl _—
Vi, U = m+[U57‘I’+]1

ho ©hy 1 As
= S, 2 (1 @7) € sl

We subtract both equations and get

. hl C}hz
<€M7u|s|>p2 - /\Z _I_Iug‘
(b) Similarly we have
1 Tt
Velde = 5 {1+ . (V1) wps]) p2
and
. hz C}hl
[‘/757 US]Q — QASTLL + [Us7 ‘/t]l
ho ©hy 1

As
= 2/\57'75 + 5 + T_t <U|t|7 U|5|>p2.

Again subtracting both equations we get

hl C}hz
AS @Tt)(AS —|— Tt) )

CIEES (
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(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)



Summarising (4.54)-(4.59) we get

1 L hl C}hg
Us, ¥ = —11 — , Us = 4.60
ot = 3 ( " ’As) o) = 3 (e i) o
1 LM hl C}hg
57\1}— = |1 N s Us = ; 4.61
[U ]J 5 ( ﬁl/\s) <€M u >p2 2/\5(/\5—|—2,u) ( 6 )
. 1 .As . hl @hQ
U s = — 11 — , Us = _ 4.62
[ +7U]1 con (2 ( —I—ZN) <€M u>p2) ﬁQU(/\s@Zﬂ) ( 6 )
v_. U, = — 11 — , Us = 4.63
[ 7 ]1 con (2 ( ! :u) <€M ! >p2) ZQN(AS + l:u) ( )
1 As — P —he
[Vh Us]l _ i gi‘F nl) <u57 725>p2 iq—t_(;\;—n) o (4.64)
2er T2 (1 + /\_t) (U v) 2 = Tzt + e
1 Tt — _hi=hy
[U V] _ 2 (1 + /\S) <u57 Ut>p2 22:(As—7t) (4 65)
e ho=hy 4 1 (14 As —  ohi=h hy—hy :
QASTt —I— 2 —I— Tt <u57vt>p2 - QASTt —I— 27—t(As_7—t)

Now we need only substitute (4.60)-(4.65) into (4.48)-(4.53) in order to obtain the ex-
pressions for the coefficients. One will see that, for s;t € N

bi’s = b; = conj(bZ,) = conj(b})

= ) - s ) 4.66
vf = Wt = conj(¢i) = conj(y_?) (4.66)
and

Ty o=, gt o=

o= & A = (%67)

Hence it suffices to calculate bf and 3 only for positive s, ¢, and df only for

s>0At>0 as well as for s > 0At < 0. We also make the following observations:
For s > 0 we have with the Cauchy-Schwarz inequality ([.,.]2 is positive on 11} )

Uy1 Vs, Ve

|C§+1 @H = [L+|1|VS||§ ]2 S p21N||Us-|—1 ¢>Vs||27
Ve—Us11,Us

|d§+1 @1| = [ ||U:-_:1||?+1]1‘ < p21N_||U5+1 @VSHI-

Thus with (4.43)

s—1
and lim d**!'=1= lim d=%"'. (4.68)
5— 00 5— 00
But for all { € Z\ {1} we have
Jim ¢l =0 and Sgrﬁmdgﬂ = 0. (4.69)
Remark 4.4
(1) It is not surprising that |1|im ¢ =0 and |l|im dj = 0, which follow from
t|—o0 s|— 00
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the Riemann lemma for Fourier coefficients. The significance of the other limits
obtained in (4.68) and (4.69) is that the spaces span {U, : |s| > {+1} are almost
orthogonal to the spaces span {VS s| < l@l} for large [ € N. For large s > 0
the eigenvalues A;4q and 7, are also almost the same, respectively for large s < 0
the eigenvalues A;_y and 7,. Thus one can say that the operators A; and A,
basically differ only on the complements of the spaces span {US ds| > L+ 1} A
span {VS s s| > l} for large [. This complement is of finite dimension.

Above property is important for the motivation to apply the Galerkin method in
Section 4.4 to approximate the spectrum.

The calculations of the coeflicients of the eigenvector expansions do not take into
account the special values of the tension 7 and the density function g(z) of the
solvable model, thus they are valid also for the general case.

4.2.5 The difference of the resolvents

Both resolvents R{ and RS (if they exist for that « ) are defined on the same space
C, so it is possible to consider the difference RS <Ry . We have with (4.28) and (4.39)

a a « @7’ Y Y
R &R = (m? o ) (K3 <K7),

and for the difference of the Green’s functions (see (4.27) and (4.38)) we get for 0 < z <
£ < N with Lemma A.43

_b@r©) _ hr(©

W(lz,f‘) W(lhf‘)
lo(2) [ll(ac)r’(ac) @li(x)r(x)] <l (2) [lg(x)r’(ac) @lé(x)r(x)]
W(lg, T‘)W(lh T‘)

Gy (2,8) =G (2,€)

=r(¢)

W)
- W(zg,r)W(zl,r)’“(x)’“(f)‘

The same holds for 0 <& <2 < N, so that K3 <K7{ is the symmetric one-dimensional
operator

with

. N
K K8 oKD () o 0 /0 o(E)r(E)y(©)de ()

W(ly,13)

2:= W (Lo, )W (L1, )

The action of R™ := RS < R{ is expressed by

() =o () (00

= h° (g) = Qaf mg,m(i;r), (4.70)

which is also a one-dimensional operator mapping onto the subspace

A% = span(,r )
ar
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Since

R (wir) = Q(2ar, r>@(¢;r)

an estimate of the norm of R® is
1B lop > 2|0 [I7[|Z, -

The constants in (4.70) for the solvable model are

O — hl C}hz
[h1 + apcot(apN)][hs + apcot(apN)]
and r(z) = cos(apz)scot(apN)sin(apz).

4.3 The generator A of the expectation semi-group

Now we consider the Cauchy problem (4.9) for which the value of & in the boundary
condition (4.11) at @ =0 jumps between the two values iy > 0 and hy < <=7 . Let the
jump process be realised by a symmetric, 2-state, continuous-time Markov process with
exponentially distributed (intensity s¢) sojourn times (cf. Chapter 2) and generator

sl 1
Q::%( 1 @1) , 22> 0.

Then on the space (C,[.,.J1) x (C,[.,.]s) the infinitesimal generator A(s) of the expec-
tation semi-group is

(A0 . [ ide =ide
A(%)_( 0 A2)+W(<:>idc ide )

Alternatively we can make use of the decomposition of Co = II4 GII_ (cf. Section 4.1.4.)
and consider the expectation semi-group on the space

(Cv ['7 ]1) X [(H+7 ['7 ]2) X (H—7 ['7 ]J)] :
Define the imbeddings
Pp:My < C and P_:1I_<(,

the identities idy on 114 and id_ on II_ | and recall that P, and P_ are the [.,.];-
orthogonal projections of C onto Il and II_ respectively. Then A(s) is

Ay +ixide sixPy SixP_
./4(%) = @Z%P_|_ A2|H+ + 13 1d_|_ 0
P 0 Agln_ + i id_

The question to be pursued here is, again, what sufficient and/or necessary conditions
there are so that for some values of s stability in average is obtained. And if so,
we want to know, what these values are. Thus we need to show that under certain
conditions the generator A(sr) is dissipative or similar to a dissipative operator (cf.
Theorem A.26 and Proposition A.29), or its spectrum is contained in the open UHP.

With regard to Hypothesis 3.1 we make the
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Hypothesis 4.5

A necessary condition on the possible choice of values for s to obtain stability in average
includes a relation between the two terms ‘hl + %‘ and ‘hz + %‘ .

Possibly the requirement is

hi+ 1/N

— >
h2+1/N>

Further, we make the following assumption, which will be the basis for most of the
approaches to determine the spectrum of A. It is connected with the possibility to
approximate the spectrum.

Assumption 4.6
For the operator A the expression

| A sa ideyu|

[l

with o« € C and uw € H X H is a good indication of the distance between « and the
spectrum o(A). In particular, if A is small, then the distance dist(o,0(A)) is small
as well.

A is not self-adjoint (cf. Remark 2.35(1)), so Corollary A.15 is not applicable. How-
ever, Corollary A.18 gives the relation between A and the distance to the numerical
range. Also does the term A occur in the definition of the approximate spectrum (see
Lemma A.6). On these grounds stands the assumption.

4.3.1 Asymptotic behaviour of the spectrum of A

It is possible to describe the asymptotic behaviour of the approximate eigenvalues of
A(5) for large absolute values. Recall that Ui(,41) (s € N) are the eigenvectors of
Ay for the eigenvalues Ayo41) with Ayqq) & i%ﬂ' for large s, and Vi, are the
eigenvectors of Ay for the eigenvalues 7., & i%ﬂ'. In Section 4.2 it is shown that

Sli}r{)lo |/\:I:(s-l—1) STl =0, (4.71)
and also that (with the calculations given in Appendix C.1.5)
Jim [|Us(spr) &Vasllj =0 =12 (4.72)

The complex numbers Agy1, Asypr + 203¢, A_s—1 and A_;_; + 2i3¢ are approximate
eigenvalues with approximate eigenvectors

or(s) = (), @a(s) = (Y1) @s(e) = (V) and @y(s) = (V5 ).
as we will see in the following. The norms of above vectors satisfy
125 () ” = [1UsqallT + IVallz 2 p*N - =1,2,3,4,

and it is

Ay (5) €Ay 101 (s) = ( 22U V) ) .

@i%(U5+1 @Vs) + (Ts ¢>As+1)vs
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A Im(z)
2
..... Ot e | s
Re(z
= -
(2s+1)m (2s+1)m
T 2N 2pN

Figure 4.5: An asymptotic set for the spectrum o(A).

Therefore
[A21(5) 212 (5)[
[ =
1 2
<IN [%2||U5+1 SVl + (ellUss1 SVall3 + 76 SAsqal|Vall2) ]
1
< oy [ MV @Vl + 22 1Uss VA + 27 Ao PV

With (4.71) and (4.72) we get

. AD(s) ©As41P1(s)|
lim
s=00 @1 (s)]]

—0,
and the same limits for the expression with the vectors ®;(s), ®s(s) and Py(s).

Above results show that one can expect that the set

A= {z : Re(z) = ipiNQS; Len (Im(z) — 0V Im(z) = zm) } (4.73)

is an asymptotic set for the approximate spectrum of A(s¢) for large absolute values,
illustrated in Fig. 4.5, accumulation points are <oo and +oo.

Of essential importance for the question of stability is whether the imaginary parts of the
eigenvalues near the real axis are positive. We know from the Section 2.4.2 that initially,
for small 3¢, the imaginary parts of all eigenvalues near the real values Ay, and 7y,
are positive. However, nothing is known about the eigenvalues with small absolute value
and for large .

4.3.2 Perturbation Theory and Stability in Average

It is not shown yet, that Q' x idg is bounded. However, if it is bounded, the norm
is bounded from below by ||Q' x idg|| > 5, see Remark 2.35(3). From the result of the
study of the simple example in Chapter 3 we expect that one has to choose s larger
than some constant, say s > ¢, in order to have stability. In any case we have then
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Q! x idy | > c.

The theorems of Perturbation Theory like Proposition A.32 and Theorem A.36 esti-
mate the distance between the spectra of the perturbed operator and of the unperturbed
operator. The spectrum of A(0) is real with two complex eigenvalues. Knowing that
the spectrum is slightly perturbed from ¢(.A(0)), Proposition A.32 does not help to
answer the question of stability. For that one has to show that the new eigenvalues, or
non-regular points, are not only inside a small disc around the eigenvalues of A(0), but
inside the upper half disc, in the UHP. That the eigenvalues for small values of s actually
do 'move up’ (cf. Section 2.4.2) is again not of much help - we expect 3 > ¢ > 0 bounded
away from zero. More detailed calculation on the series expansions are needed, maybe
with the help of the Feynman diagrammes, (see R.D.Mattuk: “A Guide to Feynman
Diagrams in the Many-Body Problem”, McGraw-Hill Publishing Company Ltd, 1967).

Theorem A.36 is not applicable either. Here is given only an upper bound for the
norms of the operators of the expectation semi-group, for bounded Q' x idg . Since
the exponential rate in the estimation of the norm ||e*A®)|| < Ke#* of the expectation
semi-group generated by A(0) is already p > 0 from the accretive part of Ay, we need
to find a way to decrease it to zero, rather than estimate the increase.

Much stronger results of Perturbation Theory than the standard ones are required to
find conditions for stability.

4.3.3 The resolvent of the generator A

Recall from the calculation of the resolvent of A in  Section
2.4.4, that if « is in the spectrum of A then one of the op-
erators Rf_m ) Rg_m , = [AQ S(aeix) ide + %QRf_m] - ) or
Tyt = [A ©(aeisx) ide + %QRg_m]_l does not exist.

e Assume, Rf_m does not exist. Then « <43 is an eigenvalue of A;. Since all
eigenvalues A; of A; are real it follows that o = A; + i3¢ has imaginary part
»x > 0, i.e. lies in UHP, as required for stability.

e Assume, Rg_m does not exist, thus a <3 is an eigenvalue of A, . That means
now that either o = 75 + ¢3¢ in the UHP or a = £ip 4 t3¢. If we choose 3 > p,
then all eigenvalues lie in the UHP.

e Now assume that the spectrum of T includes the number zero. T can be regarded
as a perturbation of TP = Ay & (o &ix) ide + 2 R5™ by x?RY™ since

Ay & (o iz) ide + 22 RET = Ay S ciz) ide + RS & RO

And if the norm of the operator 2R~ = 32 (Rg_m @Rf_m) is small the dis-
tance of the spectrum of T to the one of T} is small.
The eigenvalues «y, s € Z* of Ty satisfy the equation

1
As S (s Six)
0 =[a+ (As +i30)]* + 57
0= a? &2(A; +is)a+ (As +ix)? + 57 (4.74)

0= X; &(a, i) + 5

Tt e
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The discriminant of above quadratic equation is
4(Xs + i2)? SA(A2 4 2in),) = S,
so that the solutions of (4.74) are
oegl) = A; + 2t and 04(2) = A

with non-negative imaginary parts.

e The analogous calculations hold for the case that T2_1 does not exist. However, now
we get, additional to the zeroes 7, and 75+ 2i5¢, the zeroes +eu and +op 4 2esc.

Remark 4.7
(1) The assumption we made above is that the norm of »*R*~** is small.

(2) Even if one can show that the assumption is correct, one still has to show that the

(2)

perturbed eigenvalues of T} (or 753 ) near the real values ;™ are in the UHP.

(3) Observe that above calculations give the same approximation of the spectrum as
obtained from the investigation of the asymptotic behaviour.

4.4 Numerical approximation of the spectrum of A

4.4.1 Preliminaries about the Galerkin method

As described in Mikhlin[23] the Bubnov-Galerkin method is a procedure to approxi-
mate eigenvalues of an operator A. It is a generalisation of the Ritz method, and it is
applicable to operators A in Hilbert space which are not semi-bounded.

In order to solve the eigenvalue problem
AP =a®, acC

we choose a complete (not necessarily orthogonal) sequence of vectors ()72, and set
for K € N
K

Qg = Z Ak Pk-

k=1
To determine the coeflicients ap we require that A®<a®y is orthogonal to the vectors
©1,...,9K , that is

(AP ©aPr,p;) =0 Vi=1,... K (Gal)
& Zak<Aka Soapp, i) =0 Vj=1,... K (4.75)
k=1
We get a system of K linear homogeneous equations in the variables ay,...,ax . The
values for « for which there exists a non-trivial vector (ai,...,ax) can serve as ap-

proximations for the eigenvalues of A. These values are determined by setting the
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determinant of the system (4.75) to zero, i.e.

(Apr Sapr, 1) -+ (Apk Sapr, 1)
: - : =0.
(Apr Sapr,05) - (Apr Sapk, vK)
The result is a polynomial of degree K, so that we obtain K solutions 04%1,), cee (I?,)
and corresponding eigenvectors @gl), cen @%If) . In order to verify, that the numbers O‘(Ix]’)

actually approximate the eigenvalues of A one can apply Lemma A.6. If we can show
that

(i) the value of

AW - 1495 o]
eI

(4.76)

approaches to zero, and that

(ii) the sequence of sets (Ax)ken = ({04%),]' =1,... ,K})
sequences (ag)ren with ap € xi,

KeN contains convergent

then the sets Ax approximate (at least finite parts of) the approximate spectrum.

4.4.2 The Galerkin method applied to the generator A

For the generator
A= Ay + i3 ide ¢ ide
- e ide Ay + iz ide

of the expectation semi-group there exists a canonical way of choosing the infinite com-
plete set {@p}rery. We make use of the fact that the eigenvectors of A; and A, are
known and form orthogonal complete sets and define

U 0 0 0
k = ° Y/ Y/ .
e ={{rezulfoemfufy) ) )

Then we set as the vectors ®&)

K+1 U K 0 0 0
by = Es° Ft Gt G~ . 4.77
K Z ot Z HGy Gy (4.77)
s=—K-—1, s#0 t=—K, t#0

Remark 4.8

We observed in Remark 4.4 that the two invariant spaces span{Us,|s| > K + 2} and
span{Vi, [s| > K41} w.r.t. the evolutions ¢"41? and e™2! respectively are ’almost’ the
same for large K . The mixing of the two evolutions, which is the effect of the Markov
chain, basically affects only the finite dimensional complements span{Us,|s| < K + 1}
and span{Vs,|s| > K}U{W,,¥_}. The procedure described in this section is an
attempt to make use of this observation, the choice of the vector ®x is thus motivated.
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For the ®x the condition (Gal) transforms into

<A¢K Sady, ( o
<A¢K Sady, (8
Al ady, ( 0
Al ady, ( )

)> s=ek el K+1,5#0
)> A=K, . K t#0

o

(4.78)

The two components of APy are

K+1
(APr)y = > (As +ixsa) U+
s=—K-—1, s#0
K
Six Y, F'WV Gt SixGV_,

t=—K, t#0
K+1 K
(APg), =<wixx Y EUs+ Y (ntixea)FVit
s=—K-1, s#0 t=—K, t#0

+(ip 4 i3 Sa)GTU L 4 (Sip+ ixoa)GTU_.
From (4.78) follows the system of equations

(I) For s=ekK <l,..., K+1, s#0 and t =<K,..., K, t #0 respectively

K
_ {(ASH%@Q)ESUS Six Y PV, @G, eixb_ | U, ;
t=—K, 10
K+1
0=[oix Y BU+(m+ixeaf'V, v .
s=—K-—1, s#0

(IT) and

K+1
0=[w@ix Y EU+(n+ixeagGtu,, qu]J,
s=—K-—1, s#0
K+1
0= {@m Y EU 4 (Sip+ixea) TV, xp_]
s=—K-—1, s#0

7

After dividing by the norms and substituting the eigenvalue expansions from Section
4.2.4. we get

(I) For s=ekK <l,..., K+1, s#0 and t =<K,..., K, t #0 respectively

K
0=ixpi Gt i’ G+ (A +ixSa)E Six Y diF,
t=—K, t#0
K+1
0= &ix Z B+ (1 + i ©a)F'.
s=—K-—1, s#0
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(IT) and

K+1
0= (in+ixea)GTeix Y bFE
s=—K-—1, s#0
K+1
0= (Sip+ixoa)G™ ix Y bIE
s=—K-—1, s#0

Hence the condition on « to be an approximative eigenvalue of A is that it be an
eigenvalue of a quadratic complex matrix , of size 4K +4

sy 1 5 2 0
y = »3 14 35
0 ,6 ,7
with some matrices , 1,...,, 7, listed in detail in Appendix C.2.1. , acts on the vector

(G+,G—,E—K—1, L ETUEY, R peK o pel ol pt ,FK)t

The calculations of an estimate of A(B];) (see (4.76)) is given in Appendix C.2.2. The
result is the uniform, but very rough, estimate

25;];(]5) (%2 @g(K)) 4 % (%2 &g(K + 1))] +

A3 < 3:°0 [

ﬁ;;% [(%z@f(l()) (8g(K—|— 1) 4+ 2f(K + 1)) + (2K_|_21)2772 + (21{21)2]

with

K K
O = (hy ©hy)’N'pl/rt . f(K) = ;1 w,and  g(K)= ;1 ey

The limit for K — oo of Ax is indeed zero. So for larger values of K one should get
a good approximation at least of the approximate spectrum.

The mathematical software "Matlab’ provides a simple to use and still quite powerful
function (called ’eig’) for the numerical calculation of eigenvalues of a quadratic matrix
with complex entries. Additionally it is possible to illustrate the resulting sets of values
in graphs. However, it is rather slow, so that it is appropriate to use the programming
language ’C’” to calculate the entries of the large matrix , . A pseudo code for the
implementation, which is done in three steps, can be found in Appendix C.2.3.

4.4.3 Results of the numerical approximation

Some graphs produced by the programme can be found in the Appendix C.2.4. We
plot the eigenvalues in different shapes in order see more clearly in the graph, where
the respective eigenvalue lies. If we assume that the error of approximation is Ay then
inside a disc of radius Ak around each calculated value lies an actual eigenvalue or
spectral point of A(s). If the imaginary part of an O‘(Ix]’) is greater than Ap this actual
eigenvalue lies in the UHP. This value will be printed as "-’. If Ay > Im(oe(lz,y)) > 0

then there is a chance that the actual eigenvalue lies in the LHP, the value will be
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P h 1 h 2 I( A K

1 1 <l1.1 | 50 || 0.321151
1 1 <l1.1 | 200 || 0.160991
0.5 1 <1.1 | 50 || 0.129016
0.5 1 <1.1 | 200 || 0.064766

2 1 <1.1 | 50 | 0.998734
0.5]0.01| <566 | 50 | 0.919088
0.5]0.01 | <11.1 | 50 || 0.623757

1 ]10.01|<11.1] 50 || 1.287513
0.5 5 = 50 || 0.677997

e e e T T e NS

Table 4.1: Ag for different sets of parameters, and for > =1.

printed with a "o’. A value with 0 < Im(oe(lf;)) < <Ak represents the chance, that
the actual eigenvalue lies in the UHP, it will be printed with 7 whereas a value with

SAr < Im(oe(lfy)) stands for an actual eigenvalue certainly in the LHP. These values

will be printed as 'x’.

The criteria for the choice of the parameters to run the programme are
(a) h1 >0 and ho < @1/]\7
(b) The value of Ag should be small.

(c) We want to verify that the hypothesis made in Section 4.3 is plausible. For that
we need to choose the parameters such that

(1) hl-l—l/N

o hi4+1/N
h2-|—1/N>1 yor (i) = /

/N <1

In Table 4.1 are shown a few examples of values of Ag for different choices of parameters
N,p,hy,he and K when 3 = 1. Comparing the data in lines #1 and #2, also lines
#3 and #4, we see that increasing the value of K by factor 4 will decrease the value of
Ag only by factor 2. At the same moment, the amount of time needed to calculate the
approximate values in increased by an enormous amount. Since the resulting pictures
for K = 200 do not look much different to the ones for which K = 50, compare Fig.
C.2 and C.3, we chose K = 50 to produce the graphs in Fig. C.3-C.6. The data in lines
#1-#£5 also show that Apg is smaller for smaller values of p, so the latter was set to
p=0.5 or p=1 for the realisations of the programme. The sets of data in both lines
#6 and #7 were chosen to yield the ratio r := Z;E;% = 0.1, with different values of
hy >0 and hy < ©I/N . As the value of Ag is smaller for the data in line #7, this
data was chosen to produce the graphs in Fig. C.5 and C.6. For p =1, line #8, Ay is
quite large again. For the parameters listed in line #9 the ratio is r = 1. At the same
time the value of u, the imaginary part of the complex eigenvalue of A, is quite large.

For s = 0 the spectra of A(0) for the different sets of parameters look exactly like
the picture in the graph on the top of Fig. C.2, so for all other realisations s = 0.05 was
chosen as the first value of 3. One can see clearly that initially all eigenvalues go up, as
it was shown by the series expansion of the eigenvalues of A(3) in Section 2.4.2. Note
that the larger eigenvalues react faster (see especially Fig. C.3). We also observe that
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the approximation of the spectrum obtained by the numerical approach looks similar to
the ones obtained by the other approaches described in Sections 4.3.1 and 4.3.3.

The eigenvalue in the LHP, illustrated by the character ’x’, does disappear very quickly
for r = 20, which is the value of the mentioned ratio in Fig. C.3 and C.4 - stability in
average is possible! These graphs also show that the choice of p does have an effect on
that - for p = 1 in Fig. C.4 the eigenvalue in the LHP is lifted up for s < 0.55, for
p=0.5 (cf. Fig. C.3) a larger value of s is needed. This is probably due to the fact
that then the value of u is large. All graphs in Fig. C.4-C.6 have in common that the
eigenvalue in the LHP is lifted up for values of s approximately equal to .

4.5 Summary

In Section 4.1 we described the solvable model of the wave equation on the finite

string with the two different values h = hy > 0 and h = hy < ¢>]LV in the boundary
condition wu, <hulp =0 at 2 = 0. We defined what we meant by stability and showed
that the positive energy form for the generator A; of the stable evolution is suitable
to measure that. The energy form for the generator A, of the unstable dynamics is
indefinite, but we could show that the positive inner product constructed by means of
the canonical symmetry (cf. Appendix A.5) is also suitable for our purposes. However,
the former self-adjoint operator Ay now has a two-dimensional anti-hermitian part, it is
not symmetric any more.
It was found in Section 4.2 that A; and A, are self-adjoint extensions of the same
operator Ag w.r.t. different inner products, and their resolvents differ only by a one-
dimensional operator RB*. We also observed that the operators A; and A, are approx-
imately the same on a space of finite codimension. The consequence is that the mixing,
the Markov chain results in, affects mainly the finite dimensional space spanned by the
eigenvectors for eigenvalues with small absolute value. This observation motivated the
numerical approximation by the Galerkin method.

The application of some results of Perturbation Theory did not prove successful. This
was due to the fact that the values of s sufficient for stability certainly are not small,
and that the norm of the operator Q' x idy , if it exists, is not small either. Also are
all eigenvalues of the unperturbed operator .A(0) on the real axis. The theorems of
Perturbation Theory give small discs around these values, in which the eigenvalues of
the perturbed operator lie, however, they do not state, whether the eigenvalues lie in the
upper half disc, which is required for stability.

Under the Assumption 4.6 made in Section 4.3 about the approximation of the spec-
trum of the non-symmetric operator A we found by three different approaches (see
Sections 4.3.1, 4.3.3 and 4.4) the same asymptotic behaviour of the spectrum near oo,
illustrated in Figure 4.6. The approach using the resolvent also assumed that the norm
of 2R~ is small.

The results of the numerical approximation, described in Section 4.4, suggest that it
is in fact possible to choose 3¢ such that stability in average is obtained. The Hypothesis
4.5, however, is not really supported by the outcome so far. For both r =20 and » = 0.1
it was the case that the eigenvalue in the LHP was lifted up, and in all cases it was for
s & 1. This was also the case for the example in Chapter 3, where »? needed to be
greater or equal to K7 = rilw% - larger for larger imaginary part wy of the eigenvalue
in the LHP. However, the values of A are very large for larger 3¢, so that the graphs
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Figure 4.6: An asymptotic set for the spectrum o(A).

in Fig. C.5 and C.6 when r = 0.1 and r = 1, are not very reliable. Here one should
really make the calculations for larger values of K .

One could continue the investigation and for example

(i) consider the resolvent of A, maybe apply Galerkin method to the operators T}
and T5 noted in Section 4.3.3,

(ii) check whether A is normal,

(iii) make further use of the Frobenius-Schur factorisation,

(iv) check the equivalence of the norms [|.||; and ||.||s,

(v) or consider the operator A; on the Krein space (C,[.,.J;) and make use of the

results of the Theory of Operators on Krein spaces.
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Chapter 5

The wave equation on the
semi-infinite string divided by a
point mass and with random
boundary conditions

The wave equation on the finite string with boundary condition wu|y = 0 stud-
ied in the previous chapter can be interpreted in another way as well: Imagine a
semi-infinite string with a point mass M attached at z = N . But this mass is held
tight so that it can not oscillate!. Thus any displacement of the string to the left
of the mass (0 < 2 < N ) does not cause any oscillation of the string to the right
of the mass (N < z < 0o) when it is released. Here we can ignore that part of the string.

In this chapter we study the model when the mass M can oscillate, it is not held (see
Fig. 5.1). We are still interested solely in the evolution of the finite string inside the
interval [0, N], but now any wave that approaches to the mass M from the left will
have a part transmitted to the right. The energy of that transmitted part is lost to the
outside. We make use of the mathematical tools of the Lax/Phillips Scattering Theory
(see Lax/Phillips[22]) to study this model, even though we do not deal with an actual

'We could also say that the point mass has infinite mass.

u(z,1) 4 :
px) : o(r) =1
0 J/\ - -
N z

Figure 5.1: The semi-infinite string divided by a point mass.
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scattering situation. To do this, we consider the wave equation on the semi-infinite string
with some density function g(z). The part of the string for N < & < oo is not of actual
interest, we set here p(z) = 1. The point mass M at z = N is expressed by the
Dirac-delta-function, so that we have for the density function

o(z) = p(z)Xp,N) + Md(z &N) + X(N,00)-

For the solvable model we will set the tension 7= 1 and the density p(z) = p? constant.
The boundary condition at & = 0 shall again be

uy Sh(t)ulg=10

where h(t) jumps between two values h; > 0 and hy < 0 via a symmetric 2-state
Markov chain with infinitesimal generator ). Since hy determines an unstable dynam-
ics, we pursue the question whether there exist sufficient and/or necessary conditions for
the choice of the intensity s of the Markov chain, so that the system is stable in average.

In the Section 5.1 are listed the results from the Lax/Phillips Scattering Theory which
we use in the description of the solvable model in Section 5.2. However, in Section 5.3
we describe a different approach to the question of stability, not by means of random
evolutions, but by directly considering the energy terms.

5.1 The Lax/Phillips scattering scheme applied to the
wave equation on the semi-infinite string

Consider the wave equation on the positive half axis RS’

{ o()un = Ugx (5.1)

uy Shulg =10

where the positive, bounded and continuous density function p(z) is equal to 1 for
x> N, N cRT. Define the differential operator L = @L) 4 and the operator

o(x) dz?
0&1
A=
’(LO)’

acting on the domain D(A) as a subspace of the space of Cauchy data

()< (1) o]

with energy form

()01 s [T )

just like for the case of a finite string in Chapter 4. We assume in this section that
L is positive. Then A is self-adjoint and generates a one-parameter group of unitary

operator €4 corresponding to the Cauchy problem
1d
U =AU
i dt 5.2
Ly >
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A basic notion employed in the Lax/Phillips Scattering Theory is the one of the incoming
and outgoing subspaces, see Lax/Phillips[22].

Definition 5.1
Let T be a one-parameter group of unitary operators on a Hilbert space C .
If there exist two closed subspaces D_ and Dy of C with the properties

(i) T(t)D_ CD_ Vt<0, T(t)D_|_ CDy Vi>0
(i) TP = {0}, N 70D, = {0}

<0 >0
(iii) clos (tLEJRT(t)D_) =C, clos (tLEJRT(t)D+) =C

then D_ and D, are called incoming and outgoing subspaces respectively.

The solutions of (5.1) for z > N have the form of d’Alembert waves (see Strauss[33])
u(z,t) = ®1(z &t) + Po(x 4+ t)
with some smooth functions ®; and ®;. &¢1(x <t) is the wave moving to the right
(out’) with L& (z &t) = &L ® (v 1), and Py(z +1t) is the wave moving to the left
(in’) with £®,(z +t) = + £ ®5(x +¢). Thus possible choices for D} and D_ in our
case are (see Pavlov[27])
D_IJY = {(_Zm) . u € W) supp(u) C [N,o0), uly = 0},
DN = {(u“m) : u € W), supp(u) C [N,00), uly = 0}.

Additional to above properties (i), (ii) and (iii), these two spaces are also orthogonal in
the energy form since (note that p(z) =1 for z > N)

[(@L) (vi;)] N % (/Oo el + (@ux)mdx) =0

N
The orthogonal complement of Df @ DY in C is the coinvariant subspace

/C:{(UO) €C : vg=const Avy=0on [N,oo)}7

U1

because for (ZO) €K itis

1

(). ()] = [ wmas o

Define Py the orthogonal projection onto K. The Cauchy datain K has all the energy
inside the interval [0, N], the evolution of these data is exactly what we are interested
in. The following theorem about the evolution on K can be found in Lax/Phillips[22]

Theorem 5.2
Let D_ and Dy be orthogonal incoming and outgoing subspaces for a group of unitary
operators T" on a Hilbert space C, and K =C & (D4 @& D_). Then the operators

Z({t)=PcT ()|, t>0

form a Cy-semi-group of contracting operators on K with
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(i) lim Z(t)f =0 VYfek

t—00

(i) ZO)Dy =0  ZH)D_ =0

In Pavlov[25] and Pavlov[27] are given some important facts for the study of the
semi-group 7 , especially for the case of the wave equation (5.1):

Definition 5.3

For Im(k) > 0 let o(x,k) be the function which satisfies
2
ersele k) =k o(x)e(x, k),

the boundary condition ¢’ <hplp = 0 and which is equal to e®@=N) for 2 > N, also
called Joost solutions. If there exist a coefficient S(k) such that

QO($, k) + S(k)@(xv <:\’k) € L:?[O? OO)
then call S(k) the reflection coefficient.

Lemma 5.4
For Im(k) > 0 exists a unique reflection coeflicient S(k). It is a bounded analytic
function in the UHP with |S(k)| < 1. The limiting values

S(z) = lim S(z+1i), 2 €R
e—=0+
are almost everywhere unitary, i.e. S(2)S(z) =1 on R, S(k) is an inner function.

For the definition and some properties of inner functions refer to Appendix A.6. The
characteristic function @p(§) of a dissipative operator B is defined as (see Pavlov[26])

O5(¢) = (id eCC") ™2 (id @)™ (¢d &C) (id C*C) /2

where the contraction (' = (B <iid)(B + iid)™" is the Caley transform of B. For the
spectrum of B holds the important result, to be found in the book “Harmonic Analysis
of Operators on Hilbert Space” by Béla Sz.-Nagy and Ciprian Foiag, see also Pavlov[25].

Theorem 5.5
The semi-group Z(t) = PxT(t)|x is a semi-group of contractions. The characteristic

function of its dissipative generator B is the reflection coefficient S(k). The spectrum
of B is the set of roots of S(k) in the UHP.

SPECTRAL REPRESENTATION
From Lax/Phillips[22] we have the translation representation theorem

Theorem 5.6

Let T be a one-parameter group of unitary operators on a Hilbert space C with incoming
and outgoing subspaces D_ and D, . Then there exists a unitary map T : C — L3(R)
such that
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(1) The action of T on C corresponds to the translation to the right by the variable
teR in ,CQ .

(2) D_ is mapped onto Lo(R7).

For the case of the wave equation it is shown in a paper by Ivanov and Pavlov [16]
that this representation is given by the spectral representation 7 (cf. Pavlov[27])

1 R — -
T U= (uo) = ——= lim (tkuo + ur)o(z, k)o(z)de =: U (k)
Ul 27 R—=oo Jg
with inverse mapping
- 1 Rr1/(ik -
T7' Uk) = U(z) = —= lim ( /i ))c,o(ac,k)u(k)dk
27 R—oo J_p 1

The mapping 7 maps C isometrically onto L3(R), DY onto the Hardy space H2 in
the LHP (cf. Appendix A.6) and DY onto S(k)HZ , with S(k) the reflection coefficient.

Take for instance (_Zm) € Df , then with Definition 5.3

R
T( N ) = L im (tku @ux)(e_ik(x_N)—I—S(k)eik(x_N))dx
mx 27T R—o0 N
1 : —ik(z—N ik(z—N)1 R
=z i [[enem ) us (et Ly
R . .
_I_/ ux(e—zk(x—N) ¢>S(k)ezk(av—N))dw_I_
N
R . .
(i)/ Uy (e_lk(x_N) + S(k)elk(x_N))dx]
N
2 oo N
= o Sk PN gy = U (k
=00 [ N i)

With the Paley-Wiener Theorem A.62 follows

/ uxeik(x_N)dac € H_lz_

N

and thus U (k) € S(k)H2 , similarly for DY .
1 At

The action of ¢4 on C is mapped onto the multiplication operator (e?*'x) on Ly(R),

that is
Te Aty = eiktl;{(k)

Consequently, the generator B of the contraction semi-group Z(¢) on K is mapped
onto the operator P (k *.)|x , where Pk is the projection onto K = H_lz_ o S(k)H_lz_ .

5.2 Description of the problem - a solvable model

Consider the solvable model for the wave equation

{ ()t = Uy (5.3)

uy Shulg =10
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now with

o(x) = p*Xo.n) + M(z ©N) 4 X[n,00)

that is, a constant density function on the intervals [0, N) and (V,o0) and a point mass
of mass M at x =N .

5.2.1 The point mass and the differential operator L

Let L be a differential operator such that the equation o(2)uy; = uze can be written
in the form uy 4+ Lu = 0, but because of the Dirac delta function in p(z) it is now not

possible to express the differential operator L as @%% . However, it is possible to
work with L as an operator, as described in the following.

The Dirac delta function can be included as a second condition on the functions of
the domain of L. The solutions to (5.3) are continuous together with the first derivative
in z (unless maybe at @ = N ) and the derivatives in ¢. Hence we have for ¢ > 0

N+e N+e
/ o(x)uyde = / Upr AT

N-—e N-—e

N N+e
& / prugds + / wpdr + Muy(N) = uy (N + €) ©uy (N ©e)
N-—e N

Let € — 0, then
Muy = uy(N+) Suy(N&).

Thus the derivative at = N has a jump discontinuity, and if in addition ., is
continuous on [N, N +¢) for some £ > 0 it follows
Muge(N+) = uy,(N+) Su, (NS). (5.4)

The domain D(L) then certainly includes the set
{y eWs : y ©hylo=0,y"|n4 exists, and My"|ny = v |Ns @y'|N_},
and here L acts as %% with g(z) = ,02)([07]\7) + X[V,00) -
The Dirac delta function §(z < N) is often expressed by a sequence of functions
(called approzimate identity) n,(x < N) with the properties (see e.g. Hoffman[15])
(1) Tim 7,(0) = oo,

(ii) lim sup(n,(z))=0 Ve >0,

n—0oo |l’|>6

(i) [7_ ma(x)de =1 Vn € N.
For such a sequence the density functions
on(®) = P*Xpo,n) + M (2 ©N) 4+ X(v,00)
are bounded, and the operators

1 d?

Ly=o—
on () da?
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are well-defined and self-adjoint on their domains D(L,) with inner products {(.,.),
The quadratic forms are

(Lny,y) —<:>/ y'gdu.

n*

Now consider the operator L as the result of the limit of the quadratic forms (L,y,y),,
for n — oo and equip D(L) with the inner product {.,.),, then again

(Ly,yy, = @/ y"ydz.
0

The spectral properties of L on Ly, are the same as the Laplace operator @CZ—Z)Q on
Lo, L is self-adjoint.

5.2.2 The reflection coefficient and the negative eigenvalue of the dif-
ferential operator L

THE REFLECTION COEFFICIENT

ik(z—N) —ik(z—N)

The functions e and e solve the differential equation @%y =
k*o(z)y for @ > N for k € C. With view to the theory described in Section 5.1
the reflection coefficient S(k) is of importance. It is determined in such a way that the

functions ¢(x, k) (continuous and differentiable) with
o(z, k) = e*E=N) G (k)emihl==N) ,x >N

solve the boundary value problem on [0, c0)

{ eLy=1ko(x)y (5.5)
Yy <hylo=0

Divide the axis [0,00) into two parts and require

) — o_(z,k) 0<z <N
elx, k) = eik(x—N)_I_%e—ik(x—N) N <2

to satisfy the three properties

(i) ¢—(z,k) solves (5.5) on [0,N), i.e.

Lo (e,k) = k2 pPp_ (2, k)
{ :lo_(O,k) She_(0,k) =0 (5.6)

(i) ¢(z, k) is continuous on [0,00), i.e.
o (N, k)= 1+ 500 57)
(iii) ¢'(x,k) has jump discontinuity at @ = N (cf. (5.4)), L.e.

M"(N+,k) = ¢ (N+,k) ool (Ne k)
S kM1 +SFk) = ik(1=Sk) o (Ngk). (5.8)
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From (5.6) we get

(2, k) = 7T 44Ty 4 € C,

with
(tkpy ©ikpy) Sh(y+7) =0 & ' = IZZ (:Z
We define
o kp4th
" kpeih
and get
o_(x, k) = 'y(eikm + ﬁe_ik”) , v €C. (5.9)
Equations (5.7) and (5.8) yield the system
,y(eikpN n ﬁe—ikpN> — 1+5)

A piky(e*N edem P NY = S(k)(<ik + E*M) + ik + k2 M,

or, in matrix form,

ekoN - ge=ikoN &l y(k)\ 1
ikp(e®rN oge=tkeN) ik k2 M (k) )~ \ik+k*M ]°

We apply Cramer’s rule and get

(k) = (ik <k*M) + (ik + E*M)
T ik kI (M8 e N ) £ ikp (elrN e ko)

and
S = (ik + kM) (€PN 4 de= kN Sikp (et ekl
( ) - (lk @kzM) (eikpN + ﬁe—ikpN) n ikp(eikl)N @ﬁe—ikpN) .

Simplifying we get for the reflection coefficient

S(k) = e RPN (1 4 p+ ik M) (kp <ih) + e~ * N (1 @p + ik M) (kp + ih) (5.10)
kN (1 epoikM)(kp <ih) + e eN (1 + p ik M) (kp + th) '
Then we have for k£ € R
—— 1
Sk)= =+~
) = 50
so that |S(k)| =1 for all £ € R as expected from Section 5.1, and we have S(0) = <1.

The zeroes of S(k) are determined as the solutions of the transcendental equation

0=e*N(1 4+ p+ikM)(kp <ih) + e *N (1 op + ik M) (kp+ ih)
& = . : 5.11
‘ (p+ L+ ik M) (kp =ih) (5:11)

Set k=a+if, a € R, >0, then (5.11) is

o—200N 2iapN _ [(P &1+ 6M) @"O‘M] [(O‘P) +i(Bp + h)]
[(p+1<BM) + iaM][(ap) + i(Bp<h)]

= f(e, B) (5.12)
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Im(z)

Re(z)

Figure 5.2: The zeroes of S(k).

Assertion 5.7
The imaginary parts of the roots ks of S(k) =0 tend to zero for |ks| — oo

Proof:
Note first that since S(k) is analytic its zeroes accumulate at most at infinity.

Assume Je>0:Va.>032€C: {|Re(z)| >a.ANS(z)=0AIm(z) >¢e].
Fix 4> 0, then we get for the modulus of f(«, ) in (5.12)

[(p =1+ BM)? + o M?][(ap)* + (Bp + h)?]

|fle, )] = [(p+ 1 =BM)2+ a2M2] [(ap)2 + (Bp =h)?]’
and
lc}ﬁinoo|f(047ﬂ)| =L

But for the left hand side of (5.12) we have

em20pN g2iapN| _ o=260N |y o ¢ R,

and since for any root k; it is necessary that e=2°°N = ‘f(Re(ks), Im(ks)) , the as-
sumption is wrong. Hence
Ve>0 : Ja. >0 : VzeC : (|Re(z)| > a. A Im(z) >€:>S(z)7é0).
O

Also, inserting <k into the equation 5.10 yields S(<k) = S(k), ie. S(k) is symmetric
to the imaginary axis. Fig. 5.2 illustrates how the zeroes of S(k) lie in the UHP.

THE NEGATIVE EIGENVALUE

Depending on the value of h in the boundary condition, the differential operator L has
or has not one negative eigenvalue <u?, > 0. The six conditions on the corresponding
eigenfunction (x,pu) are

(i) ¢($7:u) € £2,g
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(i) $(z,p) solves (e, ) = eu?9(e,p) for « > N

(i) (2, 1) solves Loib(e, 1) = 2 pb(a, ) for 0 <z < N
(iv) v (x,p) fulfils the boundary condition /(0 i) <hi(0, 1) =0
(v) (x,p) is continuous.

(vi) ¢'(z,p) has jump discontinuity at z = N, i.e.

My"(N+, 1) = &' (N+, 1) &' (N p)

Conditions (i) and ( ) yield

(a,p) = ==N) x> N. (5.13)
Conditions (111) and (iv) give
P(x, p) = c2e!?? + cge™HPT ,0<z <N (5.14)
with
ca(pp<h) Scs(ppn+ h) =0. (5.15)

Finally, from conditions (v) and (vi) follows

g = cze“pN—l—c;ge_“pN

We consider three cases and recall that p > 0.

(1) pu<h =0, only possible for h > 0:
Then ¢z =0 from (5.15) and (5.16) is

1 <:)€M)N Ccq . 0
uM +1  pereN 2/ 0
with non-trivial solutions if and only if

0 = pe?N 4 PN (UM + 1)
& 0=p+4+puM+1.
The system is not solvable since p, M, > 0.

(2) pu+ h =0, only possible for h <0:
From (5.15) we get that ¢; =0, and (5.16) is

1 <:)€_M)N cq . 0
pM + 1 epeneN es /0
with non-trivial solutions if and only if

0 = 40N (cp+ uM + 1)
pel
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Together with the assumption pu + h = 0 follows that <u? = @%—12)2 is an
eigenvalue of L if and only if p > 1 and

Eigenfunction then is
_ etPNemrer <z < N
¢($7,u) - e—p,p(x—N) e >N

(pp=h)(pp+h) #0:
Then we get in (5.15)

pi=h
= =: 9
C3 oL i hCQ MCQ
and from (5.16)
L = ¢ (e“pN + ﬁue_“pN)

(UM + D)oy = spez (e &g, e 1N

Cot sy st 255y ) () =(3)

with existing non-trivial solutions ¢; and c¢o if and only if

or

0= p(e“pN @ﬁue_“pN) + (uM +1) (e“pN + ﬁue_“pN)

2un _ (el ouM)(pp<h)
s = T ey = W (5:17)

Here we can consider the following two cases.

(a) For h > 0 there exist no solution to (5.17), since then for x>0 and p >0
either

(i) flp) <O<etnt,
(ii) or for (p=leouM) <O0A (pp<h) <0 it is
) = LD it 1)
(p+ 1+ puM)(pp+ h)
(iii) or for (pe=leouM) > 0A (pp<h) > 0 it is also
Flu) = (p =l euM)(pp <h)
(p+ 1+ puM)(pp+ h)

(b) Exactly one solution exists, however, for h < 0. The function f(p) has

20uN
<1< ey

<1< e,

(a) simple poles at p=<h/p >0 and p= (el ep)/M <0
(/) simple zeroes at p=h/p <0 and p=(p1)/M
(v) at infinity the limit lim, o f(u) = <1
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__h
P
Figure 5.3: Sketches of the graphs of f(u) and g(u) = e?#°V .

(&) at the origin the value f(0)= (1<p)/(1+p) <1

In Figure 5.3 are shown sketches of the graphs of the function f(u) and
g(p) = e2**N for >0 and

(i) 0<p<I,

(ii) 1 <p and ©hp > (pel)/M,

(ili) 1<p and ©hp < (pel)/M.

The case ©hp = (p<1)/M has been dealt with in part (2) above.

From above and from the sketches of the graphs we see that there exists exactly one
negative eigenvalue <u2 of L if and only if & < 0. The value g is near <hs/p.

5.2.3 The stable system

Let h = hy > 0, there are no negative eigenvalues of the differential operator L; , the
evolution e™1? generated by the operator A; on C is unitary w.r.t. the energy norm
Ill1, i.e. stable (cf. Chapter 4). Apply the Lax/Phillips scattering scheme (cf. Section
5.1) to obtain the dissipative generator B; of the evolution

A (t) = P)CeiAltbc
on the space K =C 6 (Df @ DY) . The reflection coefficient is, modified from (5.10),

eReN (14 p+ ik M) + 91e= N (1 <p 4 ikM)

k)= — .
S1(k) kPN (1 op ik M) + 9e=%eN(1 + p SikM)
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with

_kp+ihy

' kp ihy
The set of zeroes {A; : s € N} of Si(k) in the UHP is the set of eigenvalues of By,
illustrated in Fig. 5.2. The spectral representation 7; w.r.t. the ||.||; -norm (cf. Section

5.1) maps the space K to Ky =H3 © SiHY.

5.2.4 The unstable system

For h = hy < 0 there exist two complex eigenvalues ¢p and <t of the generator
Ay of the evolution corresponding to the Cauchy problem (5.2). Define the eigenvectors

— _lw(l’#")) _ (Lll/(l’vﬂ)) M M
U, = ( ;/j(lw) and ¥_ = “1/}(%#) respectively. We decompose C into the two

invariant spaces II_ =span(¥,,¥_) and Il =CSII_ with the corresponding projec-
tions P_ and Py and change the norm to [.,.]; with help of the canonical symmetry
(cf. Section 4.1.4).

The incoming and outgoing subspaces are still the same as for h = hy, i.e. DY and
Df - the boundary condition does not effect these spaces. Our interest lies again in the
dynamics on K =C & (Df &y D]_V) . Though the complements are now taken w.r.t. the
energy form [.,.]2, the coinvariant spaces for both operators A; and A, are still the
same, since the forms [.,.]; and [.,.] coincide on all functions with support away from
the origin (cf. Section 4.2.2).

MODIFIED SCATTERING THEORY

In Lax/Phillips[22] is described a modified scattering theory to deal with the case that
the generator of the evolution does have complex eigenvalues. For each of the incoming
and outgoing subspaces D_ and D, are defined two new subspaces

,Dq_:P_|_,D_|_ s Df{_:D+ﬁH+
D.=P,D_ , D' =D_nIll

and some scattering matrices are constructed in connection with these.

The eigenvectors ¥, ¥_ do not lie in Dy = Df orin D_ = DY, but the 'tails’
with support in (N, 00) do. Here it is (z, ) = e #==N) 50 that

s = 5 (evten).

It follows that the ’tails’
X(N,oo)ql-l- € D_ and X(N,oo)\p— € D+7 (518)

are the projections of W, and W_ onto D_ and Dy respectively. The other parts
Xo,N) ¥+ and xpn)P- lie in K and are eigenvectors of the evolution ) = Peet2t|x
with the eigenvalues ¢y and <ip. W.rt. to the decomposition of C the evolution is
now decomposed into Zy(t) = Z(t)|n, and e'P*' where Bs is the square matrix

. 0 <1
o=t (@uz 0)
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acting on

e (v ("5") o (o)) €

In order to obtain the generator of Z3(t), apply the Lax/Phillips scattering scheme
to the unitary evolution on Il , generated by the self-adjoint operator Ay = Azlmy
with incoming and outgoing subspaces D’ and D’ , which are orthogonal to II_. The
result is a dissipative generator By of the evolution Z3(t) with the reflection coefficient

eReN (14 p+ ik M) + 99e= N (1 ©p 4 ikM)
kPN (1 op ik M) + 9yeeN(1 + p SikM)

Sa(k) =

as characteristic function, where

_ kp+ihy
7 kpeihy

We also have the spectral representation 73, mapping PrK onto K; = H_lz_ o SgH_lz_.
For the zeroes of S3(k) the same picture Fig 5.2 applies.

5.2.5 The expectation semi-group

Consider now the situation when the value of h jumps between hy > 0 and hs <

0 via a symmetric 2-state Markov chain with generator ) = %(_11 _11) Let ]5_|_

and P_ be now the imbeddings of P,K and X into K respectively, and let id
and idy be the identities on Py K and X respectively. As it was done in Section
4.3, we express the generator A(s) of the expectation semi-group £(¢) on the space

(KL J0) X (PRK, [y J2) X (0] ) as

B + i idg ¢>i%PA_|_ SixP_
S P 0 Bs + 23¢ idy

Since the characteristic functions of B; and By are known it is desirable to obtain a
spectral representation of A(») and its domain in order to study its spectral properties.
However, for this the space 3 needs to be represented in the Hardy spaces.

The question how to do that has not been answered yet. The map 7; maps the
vectors x[o,N) ¥4 and x[o,n)¥- onto some functions fi (k) and f_(k) in HIo S HY,
maybe one could ’add’ these functions to K5 . But what should one do then in the more
general case of an n-state Markov chain? And how should one encode the eigenvalues
+ip into Py (k)7

In the next Section another approach is described.

5.3 The energy approach to stability

It was seen in the previous Section that the evolution on the interval [0, N] is con-
tracting in the stable mode h = h; > 0 - the energy dissipates to the outside.

The unstable mode of evolution for h = hy < 0 is characterised by the fact that
there exists the eigenvalue e#’ of £(t), the energy in the corresponding one-dimensional
subspace Y_ = span(x[o,n]¥-) increases. However, the evolution on the complement
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Yy = Il @ span(xp,nV4) is contracting, the energy also dissipates.

When the Markov chain is activated and the dynamics jumps between the stable and
the unstable mode, the system is stable in average precisely if the expected amount of
energy dissipating to the outside exceeds the expected amount the energy increases by
inside the interval.

Above observation suggests an approach to the question of stability in average in terms
of the energy, different from the one based on the random evolution and the expectation
semi-group.

Assume the evolution starts in the unstable mode with initial condition
U = US’ (0) —|— OéoX[07N]\II_
where ;" € Y} . The energy contained in Y_ is

lovo| []x[0,N7 ¥ - ||

since Y_ 1 Y, . After some time ¢; the system jumps into the stable mode, the evolution
semi-group is now generated by B; and starts with initial condition

Uy = Uy (1) + e oo n P

The eigenvectors ®,, s € N, for the eigenvalues k; of B; form a basis for K, w.r.t.
which there exist unique coefficients (31(s))sen, such that

Uy =Y Bi(s)2,.
seN

The energy contained in Y_ is distributed among the eigenvectors of By. When the
system jumps back into the unstable mode after some time ¢ energy will have dissipated,
and the vector

Uy =y ™20, (5) @,
seN

is now expressed in the form
Us = U5 + o xpo,n V-

Above process is repeated.

One can expect that for certain pairs of times ¢; and ¢y one gets |oy| < |ap|. In
order to establish above inequality one will need to determine how exactly the energies
of the invariant spaces of the respective evolution semi-groups are distributed between
each other. It seems plausible that a necessary condition for stability in average is that
the expected value satisfies

Ellen|] < favol.

To obtain above inequality the relations between the complex eigenvalue <ip of A,
the imaginary parts of the eigenvalues k; of By, and the intensity s of the Markov
process will need to fulfil certain conditions.

We saw in the last section, that the imaginary parts of the k; tend to zero for large
real parts. This means that mainly the energy dissipates which is contained in the
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Figure 5.4: Illustration to Hypothesis 5.8.

subspace spanned by the eigenvectors for eigenvalues with small real part. Additionally,
based on the observation made on the model in Chapter 4, we can make the conjecture
that the energy on Y_ is mainly distributed onto exactly these eigenvectors, and vice
versa. Say, we restrict our attention on the subspace

G, = span {(I)S} = span {@1, . ,@n}
|Re(ks)|<g
for some g > 0. Then the rate of dissipation of the energy is given by the imaginary
parts of ki,...,k,, and it can be estimated for instance by min{/m(ks) :s=1,... ,n}.

It is plausible that this rate should be large compared with g, in order to obtain stability.
This leads to the

Hypothesis 5.8

A necessary condition that stability in average is possible for the model investigated in

this chapter is that the ratio of y to either (i) min {Im(ks) : |Re(ks)| < g} or (ii)
> Im(ks) is small for some g > 0.

|Re(ks)l<g

This condition can be interpreted geometrically, illustrated in Fig. 5.4, as follows:
Interpolate the eigenvalues of B; and denote the area bounded by the resulting curve,
the real axis and the lines Re(z) = +¢ by , ;. Then the necessary condition mentioned
in Hypothesis 5.8 reads , ; > .
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Chapter 6

Summary and further
developments

In Chapter 1 we formulated the Conjecture 2.34 in the way that a sufficient and
necessary condition for possible stability in average is that the operator A= T2A; +
72A, generates a uniformly bounded semi-group, where A; and A, generate the two
branches of the evolution of the system, and (71, 72) is the equilibrium distribution of
the Markov process.

THE CONCLUSION FROM CHAPTER 3

In the solvable model studied in Chapter 3 the operator 7T1A1 +72As is

- 0 < 1 0 <
A:_ 42 +5 42 = z
2 \wy 0 2\ &iw; 0 3 wl @wz

with eigenvalues \; = /3 (w? ©w?) and Ay = &4/ (w? ©w3?) | so that the conditions

of Proposition A.30 for uniform boundedness is fulﬁlled if and only if w? > w? (A is of
Jordan form for wf = w2 ). And by direct calculations we saw that stability in average is
possible if and only if w? > w2 . Thus Conjecture 1.1 is supported by this simple example,
and there is reason to believe that Conjecture 2.34 holds for all bounded operators. This

will need further investigation.

THE CONCLUSION FROM CHAPTER 4

Although Hypothesis 4.5 made in Chapter 4 might not be correct, the study of the
solvable model suggests that stability in average is possible.

Here it is not possible to check the conditions of Conjecture 2.34. The sum 7}A; +

73 Ay is only defined on the common part Dy = D(A1) N D(Az) of the domains of the
operators and here it does not make any sense, since on Dy the operators coincide. Two
modifications are by hand:

(1) One could make use of the fact, that A; and Aj are different self-adjoint extensions
of the same operator Ag defined on Dy. One would need to investigate how the
semi-group ‘40!
choice of the norm plays a role. Certainly the question of equivalence of the norms
is important.

,if Ag is a generator, relates to e*1* and €2* | and how the
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(2) The resolvents Ry and Rj of A; and A, are bounded operators, so it is possible
to form the sum R} + 72R; , also are their spectra closely connected with the
spectra of A; and A, respectively. Maybe the condition in Conjecture 1.1 can be
modified to an expression in terms of the resolvents.

Notable is the observation made in Section 4.3.2 (see also Section 4.5) that the standard
results of Perturbation Theory might not be applicable to show stability in average.

THE CONCLUSION FROM CHAPTER b

The dissipative operators By and By @& Bs again can not be added. If we assume
they could we can apply the Trotter formula (Theorem A.31) to the exponential term in
Conjecture 1.1 and get

H ez’(wal-l—wg(BQeaBg))t H H lim [emelt/nemg(BQ@BS)t/n]n H
n— 0o

IA

lim H eimiBit/n Hn H i3 (B2®Ba)t/n H”
n— 0o

The term to the left is certainly less or equal to 1 if
[[eimi Bt || (BeBa)t | < 1 e > 0. (6.1)

The operators emB1t form a semi-group of contraction throughout the space K,
whereas ¢/ (B28Ba)t 510 contracting only on XS Y_ (cf. Section 5.3). Thuson K& Y_
the inequality (6.1) is certainly fulfilled, and we need only check it on Y_, that is

e B 0, < e e, Ve,

This inequality has a similar geometrical meaning to the condition stated in Hypothe-
sis 5.8. One should compute the relation of the eigenvector xjg yj¥- to the eigenvectors
®; of By and require that the energy of y[o n)W- dissipates stronger under the action
of €™ B than it is increased by under the action of eims Bat

But since 72B; + 73(By & Bs) is not defined, one will need to investigate how the
resolvents, or in this particular case the reflection coefficients, can be put in relation to

the evolution semi-groups.

90



Appendix A

Theory of Linear Operators and
Inner Product Spaces

A.1 Linear operators on Hilbert space

Let H be a Hilbert space with the (positive) inner product (.,.) and the generated
norm ||.||. For A and B linear operators with domains D(A) and D(B) we mean
with A C B that D(A) C D(B) and Blp4) = A.

The definitions listed in this section are standard and can be found in any book on

linear operators on Hilbert spaces, for example Akhiezer/Glazman [1], Birman/Solomjak
[2], Dowson [8], Hislop/Sigal [14], or Riesz/Sz.-Nagy [31].

Definition A.1
(1) Anoperator A on H issaid to be bounded, if there exists a constant 0 < M < oo
such that ||Az|| < M||z|| for all z € D(A). In this case, the infimum of all such
constants is called the operator norm ||A]|,, of A.

(2) The operator A is said to be closed if following property holds:
Let (2,)nen be a sequence in D(A) for which there exist z,y € H such
that lim 2, =2 and lim Az, =y, then it follows that z € D(A) and Az =y.
(3) If A maps any bounded set into a compact set, then A is called compact or
completely continuous.

Clearly we have for an operator A

A compact = A bounded = A closed

Definition A.2
Let A be an operator with dense domain D(A).

(1) Sett. D* ={y € H |Ve € D(4) : 3z € H : (Az,y) = (z,2)} and define the
adjoint A* by A*y:=z with domain D(A*) =D*.

(2) Ifforall =,y € D(A) we have (Az,y) = (x, Ay), then A is said to be symmetric,
and itis A C A*.
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(3) If A= A", call A self-adjoint.

The proof of following lemma and theorem can be found for instance in
Birman/Solomjak[2].

Lemma A.3
A self-adjoint operator is closed.

Theorem A .4
A symmetric operator A is self-adjoint if and only if the ranges of A<+ id and A+ id
are the whole space H .

Definition A.5
(1) X € C is called a regular point of A if the resolvent R\ = (A <) id)~! exists
as a bounded operator defined on H . The set of all regular points, the resolvent
set, is denoted by p(A), its complement o(A) = C\ p(A4) is called the spectrum.

(2) The spectrum is divided into three disjoint parts (cf. Dowson[8]),

(i) the point spectrum or discrete spectrum
o4(A) = {} € C|/A =X id is not one-to-one}

(ii) the continuous spectrum
o.(A4) = {A € C|A=)id is one-to-one, but clos[(A<Aid)D(A)] = H A
(AeXid)D(A) £ H},
(iii) and the residual spectrum

o,(A) = {\ € C|A <A id is one-to-one, but clos[(A <\ id)D(A)] # H}

(3) The approximate spectrum is defined as

o.(A)={Ae C|I(z,) € D(A) : [[(AeXid)z,| — 0}

With the triangle inequality follows

Lemma A.6
If there exists a convergent sequence (A;)neny € C with Iimit A and a sequence
(n)nen C D(A) such that

i (A <A, id)z,] _

neo [

9

then X is in the approximative spectrum.

In Dowson[8] can be found

Theorem A.7
(1) 04(A) C o4(A)

(2) o04(A) is a closed subset of the spectrum o(A).
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See Kato[17] for more details about

Proposition A.8
The resolvent R is an analytic, operator-valued function on p(A) with Taylor expansion
at § € o(A)

By=3) (A= R VA et <R

n=0

Corollary A.9
For X\ € o(A) it is

1
>
1]l > dist(X, o(A))

The spectrum of a compact operator is characterised by the Riesz-Schauder theorem
(see Hislop/Sigal[14])

Theorem A.10 (Riesz-Schauder)
The spectrum of a compact operator is discrete, the eigenvalues have finite multiplicity
and accumulate at most at zero.

Corollary A.11
If the resolvent of an operator A is compact for some A € p(A), then the spectrum of
A is discrete.

To proof the corollary observe that for u € p(A) we have

1
A A — .

The spectrum of a symmetric operator A is real, and simple calculations yield

Lemma A.12
For a symmetric operator A the norm of the resolvent R, with A € C\R is estimated
by

1

Ry < .
2l T (V]

(A.1)

Important is

Theorem A.13 (Spectral Theorem)
If A is a self-adjoint operator then there exists a unique spectral family E, with

A= / pdE, (A.2)

For the proof of the theorem and the definition of the spectral family see for example
Riesz/Sz.-Nagy[31], here the following remark is important.
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Remark A.14
If A is self-adjoint has a discrete spectrum with eigenvalues A; and normalised eigen-
vectors v, then the Spectral Theorem states that

Vo € D(A) : Az =) A.FE.a,
S
where Fy = (., v5)vs are the projections onto the subspaces spanned by the eigenvectors,

and it says in particular that the eigenvectors form a complete set, in fact also orthogonal,
for the Hilbert space H .

Corollary A.15
Let A be self-adjoint.

(1) If X € p(A), then we have

1

1B = Fstn o)

(2) If u € C and there exists « € D(A) such that

[(A ep id)z|]

<€
[Ed] ’

then dist(p,o(A)) <e

For non-symmetric operators the distance to the numerical range can give an estimate
of the norm of the resolvent (see Hislop[14]).

Definition A.16
The numerical range 6(A) of an operator A is the set

0(A) = {(Az,2) | 2 € D(A),|]z]| =1} = {ﬁi“? ‘ v € D(A)}

Certainly it is o04(A) C 0(A4) .

Proposition A.17
Let A be a closed operator and the range of A<\ id be dense in H for all A €
C\ clos[#(A)]. Then

(1) o(A) C 6(A)
(@) Rl < [dist (A, closfo(a)])|
Corollary A.18

If there exist A € C and uw € H such that (A < X idu|| <
e|lul] then dist(A, clos[#(A)]) <e.
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A.2 One-parameter semi-groups of operators

The definitions and theorems listed in this section can be found in Pazy[29], and also
Davies[6]. Let (H,({.,.)) be a Hilbert space.

Definition A.19
(1) A family 7" = {T'(t) : t > 0} of bounded operators on a Hilbert space H (or
Banach space) is called a one-parameter semi-group of operators if

(SG2) T(s+t)=T(s)T(t)=T()T(s) Vs, t >0
(2) A semi-group 7' is called strongly continuous or a Cj-semi-group if

(SG3) lim ||T(t)x <z||=0 Vo e H
=0

(3) If the operators T'(t) for ¢ > 0 are invertible, one can define T'(&t) := [T(¢)]~1
and one obtains a one-parameter group of operators.

Theorem A.20
Let T be a Cy-semi-group, then

(1) there exist constants M > 1 and 3 >0, such that |T(t)|| < Me! forall t >0,

(2) for all * € H the function t+~ T(t)x is a continuous function from RY to H .

Definition A.21
The infinitesimal generator A of a Cj-semi-group T is the operator

A xHAw:limw
t—=0 it

with domain

D(A) = {x € H : lim M exists} .

t—=0 it

We write T(t) = et

Theorem A.22
A linear operator A is a generator of a Cy-semi-group T with ||T(t)|| < MePt if and
only if

(i) A is closed and D(A) is dense in H .
(ii) If Im(X) < &8, then X € p(A) and for all n € N we have for the resolvent

M
R < —
1= ey o
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Theorem A.23
Let T be a Cy-semi-group and A its generator, then

(1) For x € H we have

1 t+h
lim — T(s)zds =T(t)x

(2) For € D(A) itis T(t)z € D(A) and

1d
z%T(t)gv =AT(t)x =T(t) Az

(3) For the point spectra of T and A holds

7t C oy (T (1)) C 7AWy {0}

Remark A.24
From above property (2) in Theorem A.23 follows that the vector T'(t)z solves the
Cauchy problem

{Hv = a0

Important for the question of stability are the semi-groups of contractions and unitary
operators.

Definition A.25
(1) A dissipative operator A is one for which Im(Az,z) > 0 for all 2 € D(A) it is
called accretive, if Im{Az,z) <0 for all 2 € D(A4).

(2) A Cp-semi-group 7' is called a semi-group of contractions if ||7'(¢)|| < 1 for all
t>0.

(3) A Cpy-semi-group T with ||T(¢)]] = 1 for all ¢ > 0 is called a semi-group of
unitary operators.

(4) A Cp-semi-group 7T is called uniformly bounded if there exists a constant
M > 1 such that ||[T'(t)|| < M forall t>0.

Theorem A.26 (Lumer-Phillips)
Let A be a linear operator with dense domain D(A) on H, then A is the generator
of a Cy-semi-group of contractions if and only if

(i) A is dissipative, and
(ii) 3 p <0 : range(ipid<A)=H

And for unitary semi-groups we have (see Davies[6])
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Theorem A.27
The generators of semi-groups of unitary operators are precisely the self-adjoint opera-
tors .

Concerning uniformly bounded (or equi-bounded) semi-groups we find

Theorem A.28
A closed and densely defined operator A generates a uniformly bounded Cy-semi-group
T, satisfying ||T(t)]| <M (M >1,t>0),if and only if RT C p(A) and

M

Proposition A.29

Let A and B be two generators of Cy-semi-groups of operators T and S resp.
on a Hilbert (or Banach) space H, where B is dissipative. If A is similar to B,
that is if there exists a bounded and invertible operator X : H — H with Au =
XBX1u Vu € D(A), then T is a uniformly bounded semi-group.

Proof:
Let v € D(A), then with Remark A.24
w(t) = Tt < %%u(t) — Au(t) A u(0) = v
Now we define w(t) = XS(t)X~'v € D(A) and get
X twt)=SH)(X ) & %%(X‘lw(t)) = B(X'wt) A X tw(0) = X"t
& %%w(t) = XBX tw(t) Aw(0) = v
& %%w(t) = Aw(t) Aw(0)=v

From the uniqueness of the solution of the Cauchy problem follows w(t) = v(t). Since
v € D(A) was arbitrary, we get

eiAt — X@iBtX_l.
Now it follows for all ¢ > 0
A 1B - -
[l < XA e X < X))

thus the operators T'(t) = €4 are uniformly bounded.

Proposition A.30
Let A be the generator of a Cy-semi-group T on a finite dimensional Hilbert space H .
Then T is uniformly bounded if and only if the following two conditions are satisfied:

(i) All eigenvalues of A, for which the algebraic and geometric multiplicity are equal,
have non-negative imaginary part.
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(ii) All eigenvalues of A, for which the algebraic multiplicity is larger than the geo-
metric multiplicity, have positive imaginary part.

See Davies[6] for

Theorem A.31 (Trotter formula)
Let A, B be generators of Cy-semi-groups on a Hilbert space, such that 7 = A+ B
exists and generates a semi-group. Then

: . AL iBENT
ezZt: lim (ezAnean)

n—0oo

A.3 Perturbation Theory

Proposition A.32
Let A be a self-adjoint and V a bounded operator on a Hilbert space. For the spectra
of A and B=A+V holds

dist(o(B), 0(4)) < |V]].
Proof:
For A € o(A)Np(B) follows from B=A+V

(Bedid)te(Aerid) ™ = (Ae)id) V(AN id) ™,
and then

(BeXid) ™' =[id+ (AeAid) V] H (A eNid) ™. (A.3)
From (A.3) we see that the resolvent of B exists whenever

JASA IV <1 & ot > V]

With Corollary A.9 follows

dist(A,0(A)) > |[V||= A€ o(A+V)

|
In Kato[17] one can find the definition and theorem below.
Definition A.33
Let A and V be two operators on a Hilbert space with D(A) C D(V).
V' is called relatively bounded w.r.t. A, if
da,b>0 : Ve e D(A) : ||Vz| < allz| + b||Az]|] (A.4)

Theorem A.34
Let A be a closed operator on H and V relatively bounded w.r.t. A with constants
a and b asin (A.4). If there is A € p(A) such that

al|(A e id)~Y| + bl|A(A e id) Y| < 1 (A.5)
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then B = A4V is closed and X € o(B) with
[(BeXid)™!| <[[(AeXid)™|(1 <a|(A e id) || <bl|A(A <X id)~]) ™

Additionally, if A has compact resolvent so has B .

Corollary A.35
If a self-adjoint operator A has compact resolvent, i.e. discrete spectrum, then any
perturbation B = A+ V by a bounded operator V has discrete spectrum as well.

Proof:

If V is bounded then it is relatively bounded w.r.t. A with constants a = ||V|| and
b=0. Choose A with Im(X) > a > 0, then we get from (A.1)

1 1

<_

lAexid) < oo <

so that (A.5) is fulfilled and above theorem applies, since A self-adjoint implies that it
is closed. Thus B has compact resolvent, and its spectrum is discrete (cf. Corollary

A1),

The proof of the next theorem is given in Pazy[29].

Theorem A.36

Let A be the infinitesimal generator of a Cy-semi-group I’ on a Hilbert space H with
|IT@#)|| < MePt. If V is a bounded linear operator on H then A4V generates a
Cy -semi-group S on H with

15| < Me(B+MIIVIDE

For further results of Perturbation Theory see for example the book by T. Kato ([17]).

A.4 A differential operator on £[0, V]

Let L3(X) be the space of all square-summable complex-valued functions on an
interval X with the inner product (.,.)

(y,2) = /X yzdx

Denote by £ ,(X) the space with the weighted inner product

<y72>g=/ oyZzdz
X

with the real, continuous and positive weight function p(z).
From Ziemer[36] we have the following definition and theorem.
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Definition A.37
The Sobolev spaces Wi(R) for [ € Ny are defined as

dr
WiR) = {u € Lo(R)V0 < p<1:DPu= L exists A D’u € L2(R)}.

The Sobolev space Wi(R) is a Banach space with the norm

l
lullwg = | [ 1070 da
R

Theorem A.38
(1) C&E(R) is dense in Wi(R) w.r.t. the W.-norm, that is closWZ)z (CE(R)) = WS

(2) And also CIOSW2Z—1(W2[) = wi!

For example in Naimark[24] one can find the

Definition A.39
(1) A linear differential expression of order n =2 is an expression of the form

Uy) = po(2)y"(2) + p1y'(2) + pa(@)y(2)
with functions pq(z),pi(z) and po(z).

(2) A set of boundary conditions is a collection of linear forms {U;} in the variables

y(0),y'(0), y(N),y'(N), e.g.

Ur(y) = a1y(0) + a2y (0) + asy(N) + aay'(N)
Us(y) = B1y(0) + B29'(0) + Bsy(N) + Bay'(N)

together with the conditions U;(y) = 0. At least one of the «;’s and at least one
of the (3;’s should be non-zero.

(3) A differential operator L isa pair ({,D(L)), where [ is a differential expression
and D(L), the domain of L, is the set of all functions [ can be applied to and
which satisfy certain boundary conditions U;(y) =0.

In Tikhonov[35] can be found following the definition and theorem.

Definition A.40
The Green’s function for a Sturm-Liouville operator L on £;[0, N] with differ-
ential expression

d d
1) = 5= (se)7000)) + atonyo)
is a function G'(2,&) with the properties

(i) For 0 <2 <& and { <o < N itis {(G(,€))=0.
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(i) G(.,&) satisfies the boundary conditions in z.
(iii) G(.,€) is continuous on [0, N].
(iv) The first derivative exists with one jump discontinuity at = =&, and

d d 1
%G(xvg) $:£+0¢>%G($7€) 9025_0: p($>

Theorem A .41

Assume the homogeneous boundary-value problem L(y) = 0,y € D(L), possesses only
the trivial solution, then the solution of the inhomogeneous boundary-value problem
L(y) = f is expressed by

N
y(a) = / G, O F(E)de = (G (2, ), T)

Definition A.42
The Wronskian of two functions y,z € C*(R) is the determinant

9

o) | Y@ (@)
Al )“‘ J(r) ()

also denoted by W(y, z)|. .

With regard to the problems described in Chapters 4 and 5 we consider here only the
special differential operator L with differential expression
1 d?

l(y) = %@ (A.6)

on the domain D(L) defined by the so called Sturm-Liouville boundary conditions

a1y(0) + a2y'(0) = 0
{ Bry(N) + By (N)=0 (A.T)

Immediately from

d _ d ’ I\ " "
W2 = 2 ey'z) =y oy's
= ylAoz] &[S oylz =0
follows
Lemma A.43

The Wronskian of two solutions y and z of

1 d?
1(9)2%@

is constant.

yAiy =0 ,AeC

101



Remark A.44
1 d?

The differential expression [ = Sy ez On the space £, ,(X) has analogous properties

to the much simpler expression [y = @Cﬁg—z on L3(X) with corresponding differential op-
erator Lg, which is of the form of a Sturm-Liouville operator. Many equations connected
with [ can easily be modified to equations with [y like

yy=f & lo(y) = of

The formulae for Iy on L£5(X) hold for [ on L4 ,(X). This is of particular use if 1/p(z)
is not differentiable or has singularities.

The differential operator L is symmetric on the space L3 ,[0, N], since for y,z €
D(L) we have (integrating by parts)

N N N
/ ol(y)zde = [ey'Z], + / y' 2 dx
0 0

N
= [eyz+ yﬂé\f—l—/o oyl(z)dz (A.8)

So, in particular, its eigenfunctions are orthogonal to each other, in fact they form a
complete set, since also

Proposition A.45
L is self-adjoint on L3 ,[0, N]

Proof:

We need to show that D(L*) C D(L), as from (A.8) follows that the differential expres-
sion for L* is also [ (cf. Naimark[24]). So let y € D(L), we want to find all z € C?
such that

<L(y)7 Z>Q = <y7 Z(Z)>Q
From (A.8) we get the condition

[(:)y’?—l— yz' év =0
W.lo.g. assume that in (A.7) ag # 0 and Fz # 0., then

0=[eyz+y7],
_(C1_ = B1_ )
& 0=—z+72|y(N)e| 7z+ 2| y(0)
a2 P2

This must hold for all y € D(L), it follows

(L(y),2)o= (0, 1(2)), © (Z—;EJFZ) —0 A (%EJr?)
& zeD(L)

THE RESOLVENT (L <A)~!

We follow the procedure described for instance in Tikhonov[35] to construct the
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Green’s function of the operator Lo < Ao, A € C, on [0, N], this will yield the re-
solvent (L &A)7L.

1. Let ¢(x) and 9(x) be solutions to

d2

Aoy = A.
Sy Ay =0 (A.9)

which satisfy the boundary condition at =0 and at x = N respectively.

2. The Green’s function is given as

615.6= g { £

Wig, ) (A.10)

3. The solution y of the boundary value problem

a1y(0) + a2y'(0) = 0

{ eLyely=f
Bry(N) + By’ (N) =0

is then given by the integral expression
N
va) = [ Gl s
0

4. To obtain the resolvent (L <A)™! of L, we observe that

1 d?
@E@y@/\y = f

2

@%yﬁkgy = of

Thus (L < A)~! is the integral operator

N
@@»*zKA:ﬂw%A<%fM@ﬂ@% (A.11)

Remark A.46
For bounded p(z) we have

N N
/0 /0 |G (2, &) Po() 0(€) ddE < oo,

so that K* is of Hilbert-Schmidt type, thus compact (cf. Hislop/Sigal [14]), L has
discrete spectrum (Riesz-Schauder Theorem A.10).
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A.5 Linear spaces with an indefinite metric

The definitions and propositions listed in this section can be found in the book by
1.S. lohvidov, M.G. Krein and H. Langer[21].

KREIN SPACE

Definition A .47
Let K be a linear space.

(1) A bilinear metric or inner product on K is a mapping £ x K — C with the
properties

(i) [z,y]=ly, ]
(H) [/\$ + uy, Z] = /\[$, Z] + :u[yv Z]

for A, p e C and z,y,z € K.

(2) An inner product is called an indefinite metric, if there exist z,y € K such
that [z,2] > 0 and [y,y] <O.

(3) A sub-manifold L C K is called
positive, if Vx e L : [z, 2]

>
neutral, if Ve e L : [z,2]=
negative, if Ve e L : [z,2] <

Proposition A.48
For an indefinite metric there exist neutral elements.

Proof:
Let 2,y € K with [z,2] >0 and [y,y] <O.
The mapping

T : A [Az+ (1eX)y, Ae+ (1eN)y]

is continuous with 7'(0) > 0 and 7'(1) < 0. Thus there is 0 < Ag < 1 such that
T(Xo) =0 and Aoz + (1 ©Ao)y is a neutral element.

The notion of orthogonality exists also for spaces with an indefinite metric.

Definition A.49
1) z,y € K are said to be orthogonal, written z| L]y, if [z,y]=0.
g

(2) The orthogonal complement of a sub-manifold M C K is

MW ={z ek : 2[L]M}
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(3) K'=Kn KM is called the isotrope part of K. If K° = {0}, then K is called

non-degenerate.

The direct sum L[P]M of two sub-manifolds as well as the orthogonal projections
are defined just like for Hilbert spaces with positive inner products.

Definition A.50
(1) A space (K,[.,.]) with indefinite metric is called a Krein space, if there exists
subspaces K4 and K_ such that

i) K=Ki[@lK-
(i) (K4+,[,.]) and (K_,<f.,.]) are Hilbert spaces

(2) For a Krein space let P, and P_ be the orthogonal projections onto K1 and K_
respectively.

(3) If min [dim(K4),dim(K_)] =k < oo, then K is called a Pontrjagin space.

Remark A.51
For z an element of a Krein space exist unique elements x4, € K4 and z_ € K_ such
that # = a4 4+ 2_ . Then with the inner product

(v, ) = [v4, y4] Slo, y-] (A.12)

the space (I, (.,.)) is a Hilbert space. If two vectors # and y are orthogonal w.r.t.
(.,.) we write # L y as usual.

Definition A.52
The canonical symmetry is the mapping J := Py &P_.

For the inner products (.,.) and [.,.] we have with (A.12)

(z,y) = [Py y] =[Pz, y] = [Jz,y]
and also [z,y] = (Jz,y).

ADIJOINT OPERATORS ON KREIN SPACES

Definition A.53
(1) For a linear operator A on a Krein space K set

Dt i={yc K|Vz € D(A) : Iz € K : [Az,y] = [z, 2]}

and define the adjoint operator AT of A by Aty =z with domain DT .

(2) An operator A is called self-adjoint if A = AT.
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Theorem A.54

The spectrum of a self~adjoint operator A on a Pontrjagin space 1, k € N, is sym-
metric w.r.t. the real axis; every non-real number is either an eigenvalue or a regular
point of A, in the UHP exist at most k eigenvalues.

And for the eigenvectors we have

Proposition A.55
Let A= AT,

(1) The eigenvectors u and v to eigenvalues A and p with A # @ are [.,.]-
orthogonal.

(2) The eigenvectors to complex eigenvalues have zero [.,.]-norm.

A.6 Hardy spaces

The definitions and facts listed in this Section are from Helson[12] and Hoffman[15].
Let £3(d)) be the space L3 on the unit circle [, 7] with measure 5-df.

Definition A.56
(1) The Hardy space H_|2_ is the space of all complex-valued functions which are
analytic inside the unit circle |z| = 1 and for which the limit

. . I ‘o112
2 N 2 _ 70
170y =l 1B = tim 5o [ [ e[

—=1-27 J__

exists; this limit defines a norm on the Hilbert space H_lz_ .

(2) The Hardy space H? is the space of all complex-valued functions which are
analytic outside the unit circle |z| =1 and for which the limit

. . 1 [ N
o 2 __ - 10
Iz o= Jim 1513 = Jim 5= [ | s

r=14+ 27 J_ .

exists; again, (H?2,||.||g2) is a Hilbert space.

For almost every 6 € [©r, 7] the radial limits
¢ . H 10 2
o) = tim fire) fe
. H 10 2
J0) = lim f(re®) fe i
exist and define Ly functions on the circle, and in fact

171l = 11113

The Hardy spaces H_lz_ and H? are often associated with the boundary functions in
Ly of the circle rather than the analytic functions inside and outside the unit circle (see
e.g. Helson[12]).
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Definition A.57
(1) The shift operator y on Ly(dA) is defined by

(X)) = e f(e”)

(2) A subspace M C L3(d)) is said to be simply invariant if yM C M .

(3) An analytic function ¢ inside the unit circle with |¢(z)] < 1, |z] < 1, and
l¢(¢?)| = 1 almost everywhere on the unit circle is called an inner function.

A relation between inner functions and simply invariant spaces is given in the following
theorem (Helson[12])

Theorem A.58

The simply invariant subspaces of Ly(d)) are precisely the subspaces of the form qH_IQ_ ,
where ¢ is an inner function determined uniquely up to a constant of modulus 1.

Definition A.59
A Blaschke product is an infinite product of the form

oy o (4225 )
? 1@6]‘2’ |a]‘|
J=1

where k € Ng, p; € N, and the zeros a; of B(z) satisfy

0<laj] <1 A 3 (1e]a?) < oo
j=1

The inner functions are then characterised by

Theorem A.60

An inner function q is uniquely expressible in the form q(z) = B(z)S(z), where B(z)
is a Blaschke product and S(z) is an inner function without zeroes and positive (thus
real) at the origin, also called a singular function.

For the proof of above factorisation theorem and the following definition and theorem
see Hoffman[15].

Definition A.61
The Hardy space HZ (H?) in the UHP (LHP) is the space of all complex-valued
functions analytic in the UHP (LHP) for which the £;-norms

/_ it iy) e

o0

are bounded for y >0 (y <0).

It holds the important Paley-Wiener theorem
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Theorem A.62 (Paley-Wiener)
A complex-valued function f analytic in the UHP is in H_lz_ if and only if f is of the

form
_ 1 < izt

with Im(z) > 0 and some function f € £3[0,00).
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Appendix B

Attachments to Chapter 3

The graphs listed below are produced with help of the mathematical software "Matlab’,
here we give a pseudo-code of the programme.

input r,ws, 3, number of steps n, step-size A
for k=1,...,n
construct Q = A(s + (F ©1)Ax)
find eigenvalues of €
plot eigenvalues (’ o’ for non-negative imaginary part,
>+’ for negative imaginary part)
end loop
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Appendix C

Attachments to Chapter 4

C.1 General calculations

C.1.1 The closure of the domain of A

The domain of A is (cf. Section 4.1)

D(A) = {(uo) tug € W3, uy € Wy, (u). ©huglo =0, ugly =0, ui|y = 0} 7

(1
the range is
Uo 1
C:{(u) 3UOEW2, U €£27 UO|N:0}7
1

and the energy form [.,.] on C is defined by

(1) (1)) =3 (Wbt [ ttwohl + oo

Claim

The closure of D(A) w.r.t. the energy form is C .

Sketch of the proof:

The Lg-closure of the second component of D(A), {z € Wj

czly =0} is Lo. So

we need to show that the closure of X = {z € W} : 2 ©hz|o =0, 2|y =0} w.r.t. the

norm

1 N
2l = G+ [ 12/Ps

is the space Y = {y € W3 : y|y = 0}. Note that the norm ||.|| is not the actual Wj

norm (see Appendix A.4). Nowlet y € Y and £ > 0.

Since W} is dense in W3 w.r.t. the W} -norm [[-[lws (cf. Theorem A.38), we can find

for § > 0 a function 2, € W;[4, N] such that z|y =0 and

£

N
/5 |y <217 de < ly Szl <5
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y/(x) N
O\ i N

Z=f
Figure C.1: The graphs of y and z for A < 0.

Define 2, € X with 2,(0) = y(0) and 23(5n] = 21, then have

5
€
ez ol < [ 134 /ot
0
Because z; € X have z)|o = hz2(0) = hy(0) .
With a construction similar to the one with which one shows that the set {f € L5 :
f(0) = 0} is dense in L, we can find a function with f € W.) defined on the interval

[0,6] and with f(0) = hz3(0) such that

J £
/ |f ¢>y/|2d$ < =,
0 2

and so that the function

y(0) =0
z(z) = o ftydt 0<a <o
z1(x) y<az <N

isin W2, Fig. C.1illustrates this construction. Then actually z € X and |[zey|]? < ¢,
which is the required result.

C.1.2 The energy norms of the eigenvectors U,,V, and V¥

(I) For the ||.||1 -norms of the eigenvectors Us; of A; we have from (4.14)

UM = U=l = (s )2 =

N 2h, hi
= ,02/0 COS2(/\SP$) + op sin(Agpa) cos(Aspr) + /\2—,102 sin2(/\5px)dx

S

N 1 h
= p2 |:— + Sin(Q/\S,ON) + ! sinz(/\spN)

2 Ay AZp?
r: (N 1

ad in(2X,pN) )| .

+A§p2(2@4Aspsm( g ))]
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With (cf. equation (4.29))

2tan(AspN)  &2Aphy

in(2A;pN) = =
sin(2AspN) L+ tan?(A;pN)  h2 4 A2p?
and
1 Asph
1.2 _ . _ sPI
" sin“(AspN) = @58111(2/\5,0]\7) RSy
we get
N(A2p? 4+ h? h h?
||U:I:s||% — ,02 ( sP”+ 1) 1 - + 1
2X3p? 2(A3p* + 17) Azp?
and thus
2 2
2 2 p°N Nhi+1 _ p*N
NI = MU=l ==+ i — 2 5

(I1) Similar calculations yield for the eigenvectors V of A,

2 2
) , PN  Nhy+1_ p*N
[S — [—5 — ‘I‘h > .

(I11) And for the ||.||s-norms of ¥, and W_ we get

1[5 = [e-lF =[P4, 0],

1/1
= 3 (?<@L2€meu>p2 + <€m€u>p2) = (€ €u) 2

N 2

2h h
= p2/ cosh?(upz) + == sinh(upx) cosh(upz) + 222 sinh?(upz)da
0 jp p2p

oy [(sinh(Q,upN) N E) N ha sinhz(,upN)_l_

dpp 2 12 p?
N 12132 (sinh(Q,upN) @E)]
pep 4pp 2
With (cf. equation (4.33))
t h2 N 2,2
smh2(,u,0N) — an (lgp ) — 2:“ p
1 &tanh®(upN)  h3 <p?p?
and
sinh(2upN)  cosh®(upN) sha
App - 2hy 2k Sp2p?)
we get
N B2 h N Nhy+1
vz = 212 (1 2 2 — h .
¥l =r [2 ( (:)u?p?) T 2 Ty
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C.1.3 The restriction of A, onto Il_

Choose
s=(5)-(,)
0/ \e,
as the basis for 1I_, then the restriction of Ay onto the space II_ is represented by the
matrix

) 0 <l
Aclp = (@u? 0 )

For a,b € C define

()= ()

As|m_ is anti-hermitian w.r.t. [.,.]s, since for a,b,c,d € C we have

GG, = 166,

<<<:>‘IL€M ceu) e + (bey, d€u>02)

N — N =

(naz +bd) [le, Iz,

() ()],
(1
(v

and then
a\ [c
A =
oG ),
Sibe Siptad) ||e,|z,

b(ie) + (i) ) e 12,

(Z)v@(w I, ==16) 4],

C.1.4 The adjoint operators of A

Here we will verify that

UeDy, Ve D(Al) = [A()Uv7 V]l = [U, A1V]1
and UeDy, Ve D(AQ) = [A()Uv7 V]Q = [U, AQV]Q

or, in other words,

A1CA8 AN AQCAS—.
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We have

|
|

U
Dy = {(uo) Dug € W227 uy € W217 (u0)zlo = wolo =0, uo|y =0, ui|xy =0
1
V)
D(Al) = {(UO) g € W22, v € W21 , (Uo)x C}h11]0|0 =0, UO|N =0, U1|N =0
1

and we let U = (Z?) €Dy, V= (Z?) € D(A;). Then we get for the value of [AoU, V]y

2[AU, V] =2 [(ZOL?) (Z?) (ZT)] 1

N [
=h (@wl)%b + / (@iul)w(vo)x + pz(lLluO)Wd$
0

N N
= hl (@iul)%b + (hl (lul)%b/ p2U1 (lleo)d$) —|—/ (U0)$(@ivl)$d$
0 0
Since ug|y = 0 we have
_— N —_— _—
Q[AoU, V]l = h1U0(@iU1)|0 + / (uo)x(@ivl)x + p2u1 (ileo)d$
0
= 2[U,AV]
Thus we have the required result
UeDyVe D(Al) = [A()Uv7 V]l = [U, A1V]1
ie. Ag C A} in (C,[.,.]1). Similar calculations yield Ag C AT in (C,[.,.]2) -

C.1.5 Estimation of ||U,y; — V;[|},7=1,2
Here we will verify that
. 2 _ .
}i}rgo ||U5—|—1 ¢>‘/SHJ =0 y J = 172
The similar will then be true for s < 0, i.e.

lim ||U;y ©VilZ=0, j=1,2
5——00

Let s > 0. For the [.,.];-norm of the difference of the eigenvectors

1
Usp1 = ( zAS;;lHS-I-l ) with  usiq(z) = cos(Asp1pa) + Aillp sin(As41p2)
S

of A; and
'Lvs . h .
V, = ( ;S ) with  vs(2) = cos(Tspx) + ﬁ sin(7spx)

of Ay we have (cf. (4.6))
2

hi| 1 1
Us Vs T = = -
|Uss1 &Vi )2 > TRl T
1 N / ! 2
+—/ ) L 2 ) v, o) do (€-1)
2 0 As-I—l Ts




For the first term in (C.1) we have

‘ 1 1 :|/\5+1¢>T5| (CQ)

|As—|—17—s|

As—I—l Ts

We will give further estimations later. In order to estimate the second term

r

in (C.1) we need to calculate

2
dz

U (@) vh(a)

As—I—l Ts

uls+1($) @U;(ﬂﬁ)
As—I—l Ts

. h
= ‘[@psm(/\sﬂpx)—l— 3 ! cos(Asp1pz) ]+

s+1

h
o] epsin(rpz) + = cos(rpz)] ‘

S

S A,S . s AS h h
Cos(ww)sm (ﬂpx)‘Jr 1y 1l

< 2p

2 2 A5-|—1 Ts
hi <h
< PN|T A+ —— (C.3)
Inequality (C.2) is true since Agpq1 > 75, |sin(§)] < ¢ and 0 <z < N.
In order to estimate the third term
N
|7 lnte) oo ds
0
in (C.1) we observe that
hysin(As ho sin (7
plusti(z) ©vs(z)| = p [cos(Asy1pz) + M &cos(Tsp) @M
s+1pP TspP
A5 S . As S h h
< plosin (2t Te Y g (Ao ST Ny S [l
2 2 A5-|—1 Ts
hy &h
< PPN Agy1 7 + —2 (C.4)
For |A;41 ©7,| have with (4.24) and (4.31)
hi &hy) N
|Ast1 7| = |es41 + 8] < % (C.5)

and recall (4.25) and (4.32)
Astal 2 55 ATl > (C.6)
Substitute (C.2) - (C.6) in (C.1)

By [Asy1 752 hi <hy\
. i < ST A N (PPN A &7
||U‘|‘1 ¢>‘/Hl = 9 |As—|—17—5|2 + P | +1 =T, |—|— |Ts|
hy (h1 ©hy)?N? N4p? o (b1 ©h)N  (hy ©hy)Np\®
< 2 5272 sirt TN PN +
< hy (hl @h2)2N6p4 n (hl C}hz)z

- 25676 5272

ST ST

N3pA(Np+1)? (C.7)
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For the [.,.]o-norm have clearly

Vs 1 < Rl &l 2N

hy <hs)?
(hy <hs) N3p3(Np 4 1)

25676

5272

So that we get the desired result

. 2 _ s
Slggo |Uss1 &Vsll; =0, j=1,2,

in fact it is ||[Usgpr ©Vil[2 =o(s7!) , j=1,2.

C.2 The Galerkin method

C.2.1 The system matrix I’

The approximative eigenvalues oe(lzy) are the eigenvalues of the (4K +4) x (4K +4)-

matrix
y 1 5 2 0
y — s 3 94 55
0 ,6 ,7

With the matrices | 1,..

-

.,, 7 as follows
i i 0 )

0 Sip A+ i

y2 = m%( b;K_l b; bi_ b;_;'-l-l )
b4 bz, by b1
~K-1 -1 1 K41 \!
3= A ( Zth Zi—l——l ii_ Qb-1|§'+1 )

, 4 = diag(/\_K_l + 7:%7 ey A_l + 7:%7 Al + 7:%7 ey A](_|_1 + Z%)

yr=diag(tog + i, .o Toy F s, T i TR i)
—-K-1 —-K-1 —-K-1 —-K-1
d_g dZy dj dy
-1 -1 -1 -1
i | Tx d, dy dy
» 5 ! ! dl dl
-K -1 1 K
K+1 K+1 K+1 K+1
dZy dZy dy dy
-K -K -K -K
C_K—1 €1 G €11
-1 -1 -1 -1
) c o c c c
_ —K— -1 1
= I K-1 1 1 {X +1
C_K—1 L Cx+1
K K K K
C_K-1 e CK+1
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C.2.2 Estimation of Ax

The Galerkin method described and implemented in Section 4.4 produces approximate
eigenvalues O‘(Ix]’) , 7=1,...4K + 4 for given choice of K. We will estimate the value

|J4(I)K @OCK(I)KH

|
Ax = C.8
: o 9
with an uniform estimate, so that there is no need for the index j.
Recall from Section 4.4.2. that
K+1
> U,
q)I( — . s=—K-—1, s#0
K
> FVi+ G, + G
t=—K, 10
and the components of A®x are
K+1 K
(ADg); = Y etixSa)EU.oix Y FVioixGN U, SixGmU_
s=—K—1, 520 t=—K, 10
K+1 K
(APr)y = @iz Y EU+ Y (ntixsa)F'Vi+
s=—K—1, 520 t=—K, 10

+(ip + i &) GTU L + (Sip+ix Sa)GTW_

Due to orthogonality we have

2

||A(I)K @Oél(q)KHQ =
2
+) +

Z Us
= <A¢]{ @O&[{@]{7 ( 0 ) >
tEL*

SEL*
2 0
+ ‘<Aq)K Sag P, (\Il )>

<A<I>K SagPr, (\I? ) >
_I_

0
<A<I>K Sag Py, (Vt) >

2

_I_

9

and with condition (4.78) we get

||A(I)K @Oél(q)KHQ =

= Z <A<I>K SargPr, (%) >

[s|>K+2

2 2
p>

[t|[>K+1

<A<I>K SargPr, (‘2 ) >
t

We make use of the orthogonality and Cauchy-Schwarz inequality to get (let in all sums
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s#0 and t#0)
||A(I)K @Oél(q)KHQ =

=5 3 (Y PV U) + GHw U+ G U +
[s|>K+2  [|t|<K

‘|’%2 Z ‘ Z ES[UMVL‘]Z‘Q

[E>K+1  |s|<K+1

<2 ST (CSTIFE ST VA U E + 1G] [, U]+ 1G] (-, D) +

[s|>K+2  |t{|<K [t|I<K
+3 3L DT P YD (U Vil
[t>K+1  |s|<K+1 [s|<K+1

Since |a+b+c|? < 3(Ja|*+1b]?+|c|?), a,b,c € C and with (4.48)-(4.53) in Section 4.2.4.
AP K @Oél(q)KHQ <
<3 Y [ ETP YA PIUE + G PN + 1G] +

[s|>K+2 |¢{|<K [t|I<K
LD DR D24 SR AR (| H
[t>K+1  |s|<K+1 [s|<K+1

Observe that

lexl® = > IEPUULE+ Y [EPIVAE +1GF PG + 1G]l

|s|<K+1 t|<K
IR L A L
- Itls;,t;m'Ft'2 = WH(I)KHZ < ﬁLNH(I)KHZ (C.9)
=P < ploxl?

Then

||A(I)K @Oél(q)KHQ <

3 2 S ja [0 PIIUSNE | [9=PIU I

§3%2||(I)K||2 ( - |dt|2||Us||411_|_ + || 2||1 + || 2”1)_'_

: N~ W] |
|s|>K+2 ¢| <K J J

2
+exl® Y (Y p?NIC’iIZIIVtII%) (C.10)

[E>K+1  |s|<K+1

(I) Estimation of |A; &7

For |A; &1 we get with (4.23) and (4.30)
(1) For s > 0At <0 have

(sl + [t o)7

1
[As 7| = A+ 710 = p—N[(|8| )7+ 25 =] > N

For the following let s,¢t > 0.
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(2) s>t+2, then

(seotel)r

1
|A5 @Tt| = p—N[(S@t@l)ﬂ'—ng + (St] Z pN

(3) t=s=K+1, then

T SeRy1 ©0K 41
IAK+1 ©TK+1] = TK41 ©AK 41 = oN

for K + 1 large enough have certainly

s > T SCK+1 @5](4_1 s

p—N Z oN = 771(+1p—N

with 0 < nrg41 <1 and ng < g4 forall K e N.
In order to estimate
T

T
e > P
AN = TN

and then obtain

T Eert1 S0Kk41 .7
TR >
pN pN

we require that exi; + dx41 < 7(1 7). Because of (4.24) and (4.31) this is
fulfilled when

N ~ . N(hl C}hz)
N (hy ehy) < (1 K 41> o)
K+ neh) srllen e K+lz-5n20

N(hl C}hz)

(K + 1) (€.11)

& g<le

(4) t=s4+1=K+1, then

1 T
|As | = [T ©Ak| = p—N[Qﬂ' Sk S0k41] > p_N
(5) t > s+2, then

(t &s)m
pN

1
|A5 @Tt| = p—N[(t s+ 1)7T —Es @(St] Z

(I) Estimation of the coefficients

We substitute above expressions, (4.60)-(4.65) and
2|s| ) s|\m

R
pN pN

from (4.25), (4.32) into (4.48), (4.51), (4.52) and (4.53) to get for df and ¢! with
@ — (hl—h2212N4p4

ks

|[As] >

(divided into five cases)
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(1) Let s >0At <0, sothat with s+ |t| <1 > |t], s+ |t| <1 > s and 2s<1 > 5 it

follows
hy <hs hy <hy \2 1
ERNUE = ! <40— 12
i ( 227 2A5(As @rt)) (2s ©1)%2 (€.12)
hy <h hy <h 2
112 V 4 — 1 2 1 2
|CS| || t||2 QASTLL + 2Tt(A5 @Tt)
1.1 4 4 1
< - - 1
< 19 ((25@1)2 T sz T 52) (€.13)

(2) Let s >t+2 and s > K + 2, then with s&t<l1 > K+ 14t then

EAieAs

IA

(hy ©hy)? 2N2p? 2N2p?
4 m2(2s<1)t|  m2(2sel)(setel)

<ot (Ly L, 1 (C.14)
T (2sel)2\t2 (K+let)t (K+1et)? '

(3) Let t=s=K+1, then

K412 4 (h1 ©hs)? (G] 1
kil Vi < — C.15
| Ix-|—1| || Ix+1||2 4|/\K-|—1|2|/\K-|—1 @TK-HP — (2[( _|_1)2 77%&"4—1 ( )
(4) Let t=s4+ 1=K+ 1, then
; €]
K4112|1v/.. (14
e T P IVE Al < Ok o1 (C.16)

(5) Let t >s+2, s< K<1, then with t &s > K <s and 2s<1 > s, then

L PIVillz <

4 4 1
© ((25@1)%2 TR et 20 @5)2)
1 4 4 1
o ( : 4 4 ) (.17)

2\ (2se1)? " 2sel)(Kos) (K <s)?

A= s

And for ¢35 and v¥° we have

|¢s |2||U ||4 _ hi1 <hsy 2 < (hl C}hg)zpz]\ﬂ
HITI = | < e e
2
P = | ek [ ek N
- el 2u(As ©ip) | — pPr2(2ls| ©1)2
Also it is with u?p? < h2 and (4.37)
2 2 2
H poo Nhi+ha |hal
\I} 2 = —_— > .
|| :|:||Jp2N2 IN f=4 2p2N2 s 2p2N2
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Then we get
2(hy ©ha)?p*N* 1 2072
sl PO < 2 ;= ;
||‘I’ I¥ | a7 2lsl =1)?  |ha|(2ls| 1)

(I11) Further estimations

For the three terms in inequality (C.10) we get then with (4.66) and (4.67)

(C.18)

(1)
o] -1 o] K
Yo IEPIUE = 2 Yo D> AP +2 Y Y 1P
[s|>K+2 |t|<K s=K+1t=—K s=K+1 t=1
< 140 Z 25@1221# (C.19)
s= Ix—l—l
(2)
SN s U3 801 1
5 |¢ﬁ\|p||”2||1 . |¢||\|p||”2||1 oy 1 c.20)
|s|>K+2 +ilg -1 21 =K 42
(3)
YooY ldPIvillz =
[t[> K41 |s|<K+1
—o0o K41 K-1
=2 > > |edlIvVillz+2 Z > leblPIvills +
t=—K-1 s=1 t=K+1 s=1
‘|'2|Clrx+1|||V1R+1||2-l'2|Cﬁﬂ|||V1R"+1||§1
K+1
8 2 20 20
< © —_— + = (C.21
= Z Z ((25 &1)2 + s2> + (2K + 1)252 + 2K =1)? )

t= Ix-l—l

Then substituting (C.19)-(C.21) into (C.10) yields

| |A¢]{ @O&@]{ | | 2

A2 =
R [Px][?
28@ - - 1

Z 25@1 (2so1)? Zt? |h | 2. @onE|t
=K+ =K+2
00 K+1 K+1

2342 1 & 2 20 20

“” 1o - _° il

TN [ 2. 5 (; sl | ; 52) T erkraE T eK o

t=K+1
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In practice, we will choose K and then calculate the maximal possible value 7, for

n from (C.11) and set, say, n = 0.97,,. With the definition of ©, the definitions
l

fl) = 2:1 % and g(l) ==
t= t

we then get

1 < 1 _ =% 1 _ =2
G the limits > =% and 3 G = s
teN teN

™~

1

28f(K) (72 . 8r? [ 7? .
sk <30 | P (Tayim) + 1 (S oo+ )] + (€22)

2520 2 ; ; ; 2 2
+ 20 er)) (st + 1) +2r 0+ 1) + BRIt BRe

where © = (hy ©hy)?N*p?/x%. From above we see that
lim A]{ =0
K—oo

with the right hand side of inequality (C.22) as upper estimate for A, but note that
this estimate is rather rough, also because of the estimations in (C.9).

C.2.3 The programme codes

The Galerkin method described in Section 4.4.2 is implemented in three steps:

I) Construction of the system matrix - implemented in 'C’
Yy ) p

input N,p, hy, he, K ;
calculate eigenvalues A, T,,s€ Z*, and u,
using Newton’s method;
calculate the energy norms of the eigenvectors
Us,Vs,s € Z*, and Py ;
calculate the real and imaginary parts of the coefficients bj,¢i
for s=1,..., K+1;
calculate the coefficients ¢! and df for s=<K <1,..., K+1 and
t=1,...,K;
calculate 1/xAg ;
open files to store the data;
write the parameters N,p, hy,ho, K and 1/xAg,
the eigenvalues pu,<u, (As)s, (Te)e »
and the matrices Re[l/(isx), 2], Im[l/(ix), o
Re[l/(isx), s], Im[1/(isx), 3], 1/(ix), s
and 1/(is), ¢ into the files;
close files;
end

The eigenvalues are calculated from the equations (4.22), (4.29), and (4.33) us-
ing Newton’s method described in books on Numerical Analysis, for example in

Stoer/Bulirsch[32].
(1) Calculation of the eigenvalues (04%))]' of , -in 'Matlab’

input run, fromstep, tostep, stepsize, start;
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call function ’importdata.m’;

open the files created in step (I);

read the parameters N, p, hy, ho, K, 1/3Ak;

read the eigenvalues u, <y, (As), (75) 3

read the matrices 1/(isx), ;,7=1,2,3,5,6;
I 1/(ix), 2 0

’paste’ the matrices to Q= | 1/(ix), 3 I 1/(ix), 5 | ;
0 1/(ix), 6 I

for k=1,...,tostep<fromstep+1 ;
set s =+ (k<1)stepsize ;
set , = 1ixQ + diag(Values) ;

calculate condition number of | ;

calculate eigenvalues (y%) of ,
open files to store the result;
write the parameters N, p, hy, ho, K, 3, A and condition number;

write the pairs f%(a%h,hw(a%h};
close files;

end loop;
end

The condition number of a matrix gives some information how accurate the
numerical calculation is. It should not be too large. For more details see

Stoer/Bulirsch[32].

(I11) Illustration of the results in graphs - in "Matlab’

input run, from, to;
for k=from,..., to-1;
call function ’readdata.m’;
open files created in step (II);
read the files;
close files;
divide the eigenvalues into four groups:
G1={Im(a) > Ak} ’certain UHP’
Gy ={0< Im(a) < Ag} ’uncertain UHP’
G3={0> Im(o) < €Ak} ’uncertain LHP’
G4={eAK > Im(o)} ’certain LHP
plot Gy as ’-’; plot (3 as ’o’;
plot G35 as ’*’; plot (G4 as ’x’;
caption graphs with ’kappa’, ’delta’ and ’condition’
and insert respective values;
end loop;
end
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C.2.4 Some graphs

#1: N=1, rho=0.5, hlzl, h2:—1.1, K=200; .:certain UHP, o:uncertain UHP, x:certain LHP, *:uncertain LHP

15F
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‘ﬁ 05r-
& of
g
_0.5 =
_1 | - «
-15 1 1 1 1 1 |
-1500 -1000 -500 0 500 1000 1500
DeltaK:O , cond=1138.56
2 —
15+
n 1r- N
T
8 05F -
[=}
g o
-0.5F X
_ 1 1 1 1 1 )
-1500 -1000 -500 0 500 1000 1500
DeltaK:0.032383 , cond=2650.44
2r — —
15F
i
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g 1r -
<
X
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0 (Nl 1)
-1500 -1000 -500 0 500 1000 1500
DeltaK:O.064766 , cond=4291.47
3 —
25F

0
-1500 -1000 -500 0 500 1000 1500
DeltaK:O.097149 , cond=1228.74

Figure C.2: N=1,p=0.5,hy =1,hy =<l.1, K =200,»x=10,0.5,1,1.5
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#2: N=1, rho=0.5, hlzl, h2:—l.1, K=50; (.):certain UHP, (0):uncertain UHP, (x):certain LHP, (*):uncertain LHP
15

1k

0.5

(O Qdogagnngagadogaa0od ™

(£0Q00000000000000000000 )

kappa=0.05

_0.5 =
-1r X

-15 L I | | | | | J
-400 -300 —-200 -100 0 100 200 300 400

DeItaK:O.0064508 , cond=300.783

15F
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=
= (6]
T T

o
5
T

0 R ) Q gz
-400 -300 -200 -100 0 100 200 300 400
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SRR
SRR

0 = % S i
-400 -300 -200 -100 0 1

0 20 30 400
DeltaK:O.16127 ,cond=471.41

Figure C.3: N=1,p=0.5,h; = 1, hy = <1.1, K = 50, 3 = 0.05, 0.45, 0.85, 1.25
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#3: N=1, rho=1, hlzl, h2:—1.1, K=50; (.):certain UHP, (0):uncertain UHP, (x):certain LHP, (*):uncertain LHP
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Figure C.d: N=1,p=1,h; = 1, hy = ©1.1, K = 50, 3¢ = 0.05,0.3,0.55, 0.8
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#4: N=1, rho=0.5, hl:0.0l, hZ:—ll.l, K=50; (.):certain UHP, (0):uncertain UHP, (x):certain LHP, (*):uncertain LHP
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Figure C.5: N =1,p = 0.5, hy = 0.01, hy = <11.1, K = 50, 3 = 0.05, 8.05, 16.05, 24.05
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#6: N=1, rho=0.5, h1:5, h2:—7, K=50; (.):certain UHP, (0):uncertain UHP, (x):certain LHP, (*):uncertain LHP
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Figure C.6: N = 1,p= 0.5, hy = 5, hy = <7, K = 50, > = 0.05, 5.05, 10.05, 15.05
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Abbreviations and Notations

without limitation of generality

with respect to

upper half plane, i.e. {z € C: Im(z) >0}

lower half plane, i.e. {z € C: Im(z) <0}

complex number 7

The attempt has been made to avoid the character 7 as an index.
the complex conjugate of z € C

the root of z with the argument in the interval [0, )
the probability of an event X

the probability of X under condition Y

the expected value of a random variable X

the conditional expected value

the transpose of a matrix ( or vector p

the spectrum of an operator A

the resolvent set of an operator A

the closure of a set X w.r.t. the topology generated by the norm ||.||
the set-theoretical complement of a set X

the distance between two elements z and y

the distance of an element z to a set X

a sequence of elements z, in the set X

r approaches to 1 from above

the right limit lim, x4+ f(r)

the support of a function f

the characteristic function of the interval [0, V]

the space of continuous functions on R with
continuous derivatives up to order k&

the space of continuous functions on R with continuous
and compactly supported derivatives up to order k

the Dirac delta function, shifted to x = N

the Kronecker symbol
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