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Even and odd functions

Every f: R — R has a unique decomposition
f = fo+ f1 where fo is even (fo(x) = fo(—x)) and
fris odd (fi(z) = fi(—x)).

Explicitly,
fo(x) = 3[f(z) + f(=2)], fi(z) =

Example:

e’ = (" +e ")+ 3(e” —e ") = cosh(x) + sinh(x).

Multiplication: odd - odd=even, odd - even=o0dd,

€VEll - €evVell=E€VeEll.

Usetul for simplifying differentiation and integration

formulae, since derivative of even is odd, etc.




Superalgebra

Extract essential structure of previous example.

An algebra is a vector space with a (bilinear)
multiplication. Examples: all n X n matrices, R>

under cross product.

A superalgebra is an algebra with vector space
decomposition A = Ay & A;, satistying the
multiplication rules for even and odd elements in

previous example.

Here elements of Ay are called even, those of A;

odd.




Another view of superalgebras

e Given a = ag + a1 € A, can recapture ag,a; as

before. Define o(a) = o(ag + a1) = ag — a1. Then

ap = 3(a+o(a)), a1 = 3(a —o(a)).

e In fact o is an automorphism of A and ¢% = 1.

e Can give alternative definition of superalgebra: an
algebra with an automorphism o of order 2. As a
linear map o has a +1 eigenspace Ag and a —1

eigenspace A; and this gives the original definition.




An example

gl(m,n) is the algebra of block matrices of the form

mXm MM XN

nXm nXxXn

The even part is the matrices of the form

m X m 0

0 nxn
and the odd of matrices of the form

0 m X n

nxXm 0




Key example: Grassmann algebra
Aln) =Clzy,...,x, | xix; = —x ;).

The algebra of “polynomials” in n “anticommuting”

variables.

Example for n = 3: zoxy = —x2y = +xyz,

1% = y?* = 2?2 = 0. Basis: {1,z,v,2, 2y, x2,yz, 1Yz }.

Monomials of even length commute with

everything, those of odd length anticommute.

A¢ = span of monomials of even length, A1 =

span of monomials of odd length.




The Grassmann algebra is also called the exterior

algebra on the vector space with basis z1,...,x,.
It yields the slickest way to define determinants.

It is of fundamental importance in
— differential geometry (differential forms)

— invariant theory

— study of identical relations in algebra (e.g.

Burnside problem).

It is the most important superalgebra, and is useful

in most antisymmetric situations.




Representation theory I

e In classical times, all algebraic objects were thought
of concretely (e.g. groups of permutations or
invertible matrices). The concept of abstract
algebraic structures had not arisen.

e In this century, much abstraction occurred
(axiomatic approach to groups, rings, fields, etc).
This enabled much more progress to be made (e.g.
classification of finite simple groups) by
concentrating on the essentials.

e However, in applications we still usually want
concrete information about, say, a group ot

matrices.




Representation theory 11

e Thus there is a “division of labo(u)r”: study
abstract objects / study all ways a given such
object can arise concretely. There is much interplay

between the two.

e We use linear representations so we can use linear

algebra machinery (e.g. eigenvalues).

Choose a vector space V of dimension n say. To
each element in the algebraic object we associate a
linear transformation of V', in a consistent way (a

homomorphism).




Some information may be lost this way but
considering all representations together gives the

whole picture, usually.

Analogy: photographs or cross-sections of a
3-dimensional object. No one of them gives the full

picture, but taken together they do.

Particularly important are rreducible

representations. These are (usually) the “building
blocks”.

Irreducible representations of discrete groups are
heavily used by crystallographers and chemists,

among others.
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Lie groups

These are continuous groups often arising as

symmetry groups of physical systems.

They are ubiquitous in mathematics, in areas from
differential equations to number theory.
Example: SU(3), group of all 3 x 3 Hermitian (i.e.

X =X ) matrices of determinant 1.

The irreducible representations of SU(3) have been
used by physicists (the “eightfold way”) to study

elementary particles.
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Lie algebras

Most information about representations of a Lie
group can be obtained by looking at its

linearization, the Lie algebra.

In fact representations ot the group are in 1-1
correspondence with the representations of the Lie
algebra.

Lie algebras can be studied combinatorially, even
using computer programs. There is an extensive,

rather well-understood theory.

“Every issue” of J. Nuclear Physics B contains Lie
algebra calculations.
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Particle physics

Dirac unified quantum mechanics and special
relativity. This required the introduction of a new

symmetry, between particles and antiparticles.

This was a source of consternation (only electron,

proton and neutron were known).

Experiment then found positron, and then huge

numbers of new “elementary” particles.

Gell-Mann et al. introduced quarks as a way of

explaining these particles (the eightfold way).
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Supersymmetry

o Attempts to improve the “standard model” of

particle physics have led to “superstring” theory. It
again implies a new symmetry of nature, known as

supersymmetry.

This symmetry interchanges bosons (force-carrying
particles like photons) with fermions (matter
particles like electrons and quarks). It requires each
known particle to have a super-partner (none of
these have yet been observed).

The mathematical formulation uses Lie
superalgebras in an essential way (this is the origin

of the name “superalgebra”).
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Lie algebras and superalgebras

e A Lie algebra is an algebra whose multiplication [, ]

satisfies [z, y| = —|y, z] and the Jacobi identity
[z, [y, 2]] = [[z,y], 2] + [y, [z, 2]].

o A Lie superalgebra is a superalgebra whose

multiplication satisfies

—ly,z] if = or y is even,
Tf w\_ — .
+[y,z] if x and y are odd.

and a “super” version of the Jacobi identity.

There are many evident similarities between the two.
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Differences and difficulties

e Lie superalgebras exhibit several structural features
which are more complicated than the Lie algebra

situation. The main ones are:

1. A given representation might not break up into a

direct sum of irreducible ones.

2. Putting all the irreducibles together might not
give a complete picture of the algebra.

e These problems can be studied in the common

framework of ring theory.

e The key technical tool is the enveloping algebra ot

the Lie (super)algebra.
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My work in the area

The simple Lie superalgebras have been classified by
V. Kac.

A criterion for when difficulty (2) does not arise was
given by A. Bell in 1990.

I applied Bell’s criterion to several infinite families
of simple Lie superalgebras and showed it did not

work for others.

This was a multi-paper, multi-author project which
required many different techniques including some
computer experimentation. Interesting questions

remain.
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Example

W (n) is the span of all “Grassmann vector fields”
P(x1,x9,...,2,)0/0x; = P0;. Multiplication is

ﬁw@i @@L — wmw@A@v@u + @m& vamw@ Dimension is n2"

and this is a simple Lie superalgebra. It is the analogue

of a simple infinite-dimensional Lie algebra of Cartan,

which uses commuting, not anticommuting variables.
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Interesting ring-theoretic questions

e For L = W(2n), I have shown that J(U(L)) = 0 but
it 1s known that the intersection of annihilators of
finite-dimensional irreducibles is nonzero. This
doesn’t happen for Lie algebras. What is a nice

subset of irreducibles with annihilator zero?

Primitive ideals of U(L) is the next step. Huge
theory for Lie algebras.

Does U(L) always have a unique minimal prime?

Converse of Bell’s criterion (W (2n + 1) in

particular)?
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