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Generalized Riordan arrays: their time has come

@ Generalized Riordan arrays are ubiquitous, but not always recognized
in the literature. We should use them more systematically, as a
unifying device.
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Generalized Riordan arrays: their time has come

@ Generalized Riordan arrays are ubiquitous, but not always recognized
in the literature. We should use them more systematically, as a
unifying device.

@ They fit into a much bigger picture of multivariate GF asymptotics,
lattice paths, Lagrange inversion, and the kernel method.

@ They provide an explicit low-dimensional introduction to the general
mvGF asymptotics project of Pemantle et al.

@ Their asymptotics are, in most cases, routinely derived, yet some
researchers still use complicated exact formulae that yield no insight.

@ To find out more, read preprint “Twenty combinatorial examples of
asymptotics from multivariate generating functions”, (soon to be
submitted to SIAM Review).
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Important background notation

o Multivariate sequence a : N* — C with multivariate generating
function } a(n)z®, 2" := 27" - 2.
o When d = 2, we write F(z,w) =Y, , anrz"wk.

@ Radius of convergence of power series f denoted by rad f; order of
vanishing at 0 is ord f.
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Generalized Riordan arrays Definitions

Riordan arrays

e A Riordan array (RA) is an infinite lower triangular complex matrix
M = (ank)n>0k>0 having bivariate generating function

F(z,w) Z Anp 2wk =7= 1(53(2) ord(¢) = 0,o0rd(v) > 1
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M = (ank)n>0k>0 having bivariate generating function

F(z,w) = Zankz w® oz ord(¢) = 0,ord(v) > 1.

T 1- 1—wu(z)’

o Thus ani = [2"]#(2)v(2)F; columns 0 and 1 determine M.
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e A Riordan array (RA) is an infinite lower triangular complex matrix
M = (ank)n>0k>0 having bivariate generating function

F(z,w) = Zankz w® =7= 1(53(2) ord(¢) = 0,ord(v) > 1.

o Thus ani = [2"]#(2)v(2)F; columns 0 and 1 determine M.

@ RAs with ord(v) = 1 (proper RAs) form a group under matrix
multiplication. They are heavily used, especially in Firenze, for
simplifying combinatorial sums.
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Generalized Riordan arrays Definitions

Riordan arrays

e A Riordan array (RA) is an infinite lower triangular complex matrix
M = (ank)n>0k>0 having bivariate generating function

_9(z)
F(z,w) = E Anp 2wk =7= T=w(e) ord(¢) = 0,o0rd(v) > 1
o Thus ani = [2"]#(2)v(2)F; columns 0 and 1 determine M.

@ RAs with ord(v) = 1 (proper RAs) form a group under matrix
multiplication. They are heavily used, especially in Firenze, for
simplifying combinatorial sums.

@ For us it is just as easy to consider generalized RAs (GRAs), where v
need not vanish at 0. These correspond to non-triangular matrices.
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Some examples from recent literature

e Famous number triangles (Pascal, ballot numbers, ...).
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(@ EEFENNCENEGEVC  Where do GRAs come from?

Some examples from recent literature
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@ PGFS of sums of IID random variables; discrete renewal equation.
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(@ EEFENNCENEGEVC  Where do GRAs come from?

Some examples from recent literature

e Famous number triangles (Pascal, ballot numbers, ...).
@ PGFS of sums of IID random variables; discrete renewal equation.

e Counting various kinds of restricted words/strings, particularly in
computational biology.

@ Sprugnoli/Merlini/Verri: bijection with certain generating trees;
waiting patterns for a printer, the tennis ball problem.

@ Banderier/Flajolet: certain directed walks on the line.

e Banderier/Merlini: directed walks on the line with infinite set of
jumps.

@ Prodinger: tutorial on the kernel method.

e Flaxman/Harrow/Sorkin: maximum number of distinct subsequences.
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(@ EEFENNCENEGEVC  Where do GRAs come from?

Relation with lattice walks

o Consider time- and space-homogeneous walks on Z?2, defined by a
finite set E = {(r4,s:) | i € Z} C N x Z of jumps.
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o [ generates a GRA if
> 5 € {—1,0, 1}, which includes the classical cases
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(@ EEFENNCENEGEVC  Where do GRAs come from?

Relation with lattice walks

e Consider time- and space-homogeneous walks on Z?, defined by a
finite set E = {(r4,s:) | i € Z} C N x Z of jumps.

@ We let a,; denote the number of nonnegative walks from (0, 0) to
(n,k), and let F(z,w) =3_, , Anp 2 Wk

o [ generates a GRA if
» s; € {—1,0,1}, which includes the classical cases

* FE ={(0,1),(1,0)} (Pascal triangle)
* E =1{(0,1),(1,0),(1,1)} (Delannoy paths)
* FE={(1,-1),(1,1)} (Dyck paths/ballot numbers)
* E={(1,-1),(1,0),(1,1)} (Motzkin paths)
*x B = {( ,—1),(2,0),(1,1)} (Schrdder paths)
» r; =1m =1 (corresponding to walks on N with steps given by
the s;).

@ In fact every nonnegative proper Riordan array arises in this way with
r; = 1, provided we allow E to be infinite.
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(@ EEFENNCENEGEVC  Where do GRAs come from?

Relation with the kernel method

o Let ap, = csan—s be a constant coefficient recurrence. Even nice
boundary conditions can yield nasty generating functions.
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@ The apex is the coordinatewise minimum of the shifts s along with 0.
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d = 2, and showed that:

Eyg Unersiyof Aucknd

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 8 /20



(@ EEFENNCENEGEVC  Where do GRAs come from?

Relation with the kernel method

o Let ap, = csan—s be a constant coefficient recurrence. Even nice
boundary conditions can yield nasty generating functions.

@ The apex is the coordinatewise minimum of the shifts s along with 0.
Bousquet-Mélou & Petkovsek gave an explicit formula in the case
d = 2, and showed that:
» if the apex is (0,0), then F' is rational;

Eyg Unersiyof Aucknd

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 8 /20



(@ EEFENNCENEGEVC  Where do GRAs come from?

Relation with the kernel method

o Let ap, = csan—s be a constant coefficient recurrence. Even nice
boundary conditions can yield nasty generating functions.

@ The apex is the coordinatewise minimum of the shifts s along with 0.
Bousquet-Mélou & Petkovsek gave an explicit formula in the case
d = 2, and showed that:
» if the apex is (0,0), then F' is rational;
> if the apex is (0, —p) then F is algebraic;

Eyg Unersiyof Aucknd

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 8 /20



(@ EEFENNCENEGEVC  Where do GRAs come from?

Relation with the kernel method

o Let ap, = csan—s be a constant coefficient recurrence. Even nice
boundary conditions can yield nasty generating functions.

@ The apex is the coordinatewise minimum of the shifts s along with 0.
Bousquet-Mélou & Petkovsek gave an explicit formula in the case
d = 2, and showed that:

if the apex is (0,0), then F is rational;

if the apex is (0, —p) then F' is algebraic;

if the apex has two negative coordinates, I’ can be non-holonomic.

v

v
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(@ EEFENNCENEGEVC  Where do GRAs come from?

Relation with the kernel method

@ Let an =) csan—s be a constant coefficient recurrence. Even nice
boundary conditions can yield nasty generating functions.

@ The apex is the coordinatewise minimum of the shifts s along with 0.
Bousquet-Mélou & Petkovsek gave an explicit formula in the case
d = 2, and showed that:

if the apex is (0,0), then F is rational;

if the apex is (0, —p) then F is algebraic;

if the apex has two negative coordinates, I’ can be non-holonomic.

v

v

v

@ Most examples in the literature have apex (0,0) or (0,—1). This
includes all walk examples above, plus everything in Prodinger's
“Kernel method: a collection of examples”. In this case F' is always a
GRA.
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(@ EEFENNCENEGEVC  Where do GRAs come from?

Equivalent ways of describing the Riordan domain

generating function of given type;

exact quasi-power representation, generalized Lagrange inversion;
triangular arrays with “up and to the right" recurrences;

directed lattice paths with small positive jumps;

numbers of nodes in certain generating trees;

constant coefficient linear recurrences with apex (0,0) or (0, —1);
solutions via the kernel method where only one large branch arises.

N I University of Auckand
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Multivariate asymptotics background and summary

@ Ongoing work (“the mvGF project”) aims at improving multivariate
coefficient extraction methods. See
www.cs.auckland.ac.nz/ “mcw/Research/mvGF/.
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Multivariate asymptotics background and summary

@ Ongoing work (“the mvGF project”) aims at improving multivariate
coefficient extraction methods. See
www.cs.auckland.ac.nz/ "mcw/Research/mvGF/.

@ The analysis uses residue theory near the singular set V of F.

@ Asymptotics in a fixed direction A are determined by the geometry of
V near a finite set, contriby, of contributing critical points.

@ contriby can be computed by algebraic-geometric criteria.

e In particular if F(z,w) = G(z,w)/H(z,w), then asymptotics for
ax,, are controlled by a point solving zH, = AwH,,, H = 0.
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How do GRAs fit into the mvGF framework

@ They are a fairly simple 2-dimensional case, where formulae simplify
considerably.
@ When v is aperiodic with nonnegative coefficients then

» our method derives (uniform) asymptotics for all possible A;

» contriby is always a singleton and lies in the first quadrant;

» if rad ¢ > rad v then all contributing points of V are smooth poles of
F', no matter what the singularity type of v is at z = rad v;
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How do GRAs fit into the mvGF framework

@ They are a fairly simple 2-dimensional case, where formulae simplify
considerably.

@ When v is aperiodic with nonnegative coefficients then

>

>

>

our method derives (uniform) asymptotics for all possible A;

contriby is always a singleton and lies in the first quadrant;

if rad ¢ > rad v then all contributing points of V are smooth poles of
F', no matter what the singularity type of v is at z = rad v;

if rad ¢ < rad v then we also have a contributing double point at

x =rad¢,y = 1/v(z).
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How do GRAs fit into the mvGF framework

@ They are a fairly simple 2-dimensional case, where formulae simplify
considerably.

@ When v is aperiodic with nonnegative coefficients then

>

>

>

our method derives (uniform) asymptotics for all possible A;

contriby is always a singleton and lies in the first quadrant;

if rad ¢ > rad v then all contributing points of V are smooth poles of
F', no matter what the singularity type of v is at z = rad v;

if rad ¢ < rad v then we also have a contributing double point at

x =rad¢,y = 1/v(z).

@ The aperiodicity constraint can be removed with minor modifications,
but nonegativity is essential.
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Recall: generic meromorphic asymptotics in dimension 2

Theorem

e Let F' = G/H be meromorphic in a neighbourhood of the strictly
minimal point P = (z,w) € V.

V.
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Recall: generic meromorphic asymptotics in dimension 2

Theorem
e Let F' = G/H be meromorphic in a neighbourhood of the strictly
minimal point P = (z,w) € V.

o If P is smooth, then there is a complete asymptotic expansion

Ak k ™~ (Z)‘w)_kk‘_l/2 Z bl(/\)k_l,
1>0

valid in the direction \ := (zH,)/(wH,,), and uniform as (z,w)
varies over a compact set of such points.

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 12 /20



mvGF asymptotics yield GRA asymptotics
Recall: generic meromorphic asymptotics in dimension 2

Theorem

e Let F' = G/H be meromorphic in a neighbourhood of the strictly
minimal point P = (z,w) € V.

o If P is smooth, then there is a complete asymptotic expansion

Ak k ™~ (Z)‘w)_kk‘_l/2 Z bl(/\)k_l,
1>0

valid in the direction \ := (zH,)/(wH,,), and uniform as (z,w)
varies over a compact set of such points.

o If P is a double point, then there is a complete asymptotic expansion
axe g ~ (2Mw) Fbo(N)

uniform in compact subcones of the interior of K(P). On the
boundary, the asymptotic is smaller by a factor of 2.

v
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Simplification of asymptotic formulae in GRA case

@ In the smooth case, the leading term is

by = __o@) where p(v; ) = A

2mso(v; x)
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Simplification of asymptotic formulae in GRA case

@ In the smooth case, the leading term is

¢(z)

by = m where p(v; ) = A
o Here
v;x) = v (2) an
plviw) = = oy and
2(,.. :1‘2“”(53) ) N2 — e (-
o2 (v; ) T p(v; 2) — (v )2 = gl ;)

v(x)

are the mean and variance of the random variable whose PGF is
y > v(wy)/v(x).
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el EiEes va ] R sy EiE
Simplification of asymptotic formulae in GRA case

@ In the smooth case, the leading term is

)

0 = m where p(v; ) = A
@ Here
v, ) = w(z) an
p(v; ) () d
2 z?v"(x) 2 /
o2(wiz) = 0 4 ) — ;2 = 2 (v.2)

v(z)
are the mean and variance of the random variable whose PGF is

y — v(zy)/v(z).
@ In the double point case (where ¢ has a simple pole), we have

bo(A) = M

p —
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“Explicit” GRA asymptotics: globally smooth case

Theorem

@ Let F' be an aperiodic nonnegative GRA with rad ¢ > rad v. Define
A = [ordv,degv]. If X & A then ayg i, = 0.
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“Explicit” GRA asymptotics: globally smooth case

Theorem

@ Let F be an aperiodic nonnegative GRA with rad ¢ > rad v. Define
A = [ordv,degv]. If X & A then ayg i, = 0.

@ Otherwise there is a unique solution 0 < z) < radv to the equation
w(v; z) = X. We have

W ~ [0(2)]FET2Y h(A)E
=0

uniformly in A away from the boundary of A.
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“Explicit” GRA asymptotics: globally smooth case

Theorem

@ Let F be an aperiodic nonnegative GRA with rad ¢ > rad v. Define
A = [ordv,degv]. If A & A then ayg i, = 0.

@ Otherwise there is a unique solution 0 < z) < radv to the equation
w(v; z) = X. We have

W ~ [0(2)]FET2Y h(A)E
=0

uniformly in A away from the boundary of A.

@ The b;(A) are explicitly computable in terms of derivatives of ¢ and v.
The leading coefficient is always

=)
V2ma?(v; 2))
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Examples: lattice paths

Delannoy paths

@ Here v(z) = (14 2)/(1—2), ¢(2) =1/(1 — 2), so rad ¢ = rad v and
above analysis applies.

Motzkin paths
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Delannoy paths
@ Here v(z) = (14 2)/(1—2), ¢(2) =1/(1 — 2), so rad ¢ = rad v and
above analysis applies.

@ contriby is the minimal positive real solution of 2z = A(1 — 22). Thus
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Examples: lattice paths

Delannoy paths
@ Here v(z) = (14 2)/(1—2), ¢(2) =1/(1 — 2), so rad ¢ = rad v and
above analysis applies.
@ contriby is the minimal positive real solution of 2z = A(1 — 22). Thus

Z)\:\/1—|—)\2—)\.

@ In particular, the number of central Delannoy paths (A = 1) is

1
asymptotically (3 + 2\/§)km\/;':g2)'
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Examples: lattice paths

Delannoy paths
@ Here v(z) = (14 2)/(1—2), ¢(2) =1/(1 — 2), so rad ¢ = rad v and
above analysis applies.
@ contriby is the minimal positive real solution of 2z = A(1 — 22). Thus

Z)\:\/1—|—)\2—)\.

@ In particular, the number of central Delannoy paths (A = 1) is

1
asymptotically (3 + Qﬁ)km\/ggz)'

Motzkin paths
@ Here v(z) = 2¢(2) = (1 — 2 — V1 — 22 — 322) /(22).
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Examples: lattice paths

Delannoy paths
@ Here v(z) = (14 2)/(1—2), ¢(2) =1/(1 — 2), so rad ¢ = rad v and
above analysis applies.
@ contriby is the minimal positive real solution of 2z = A(1 — 22). Thus

Z)\:\/1—|—)\2—)\.

@ In particular, the number of central Delannoy paths (A = 1) is

1
asymptotically (3 + 2\/5)1@%\/%%2)'

Motzkin paths
@ Here v(z) = 2¢(2) = (1 — 2 — V1 — 22 — 322) /(22).

@ contriby is the minimal positive real solution of 1 — 2z — 322 = \°.

Thus z), = V4X2 — 3/(3)).
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LSRN NE SN Asymptotic theorems for GRAs

Lagrange inversion

@ Suppose that v(z) = zA(v(z)) with ord A = 0. As usual we have for
each formal power series

n[z"1y(v(2)) = [y "1y’ (y)A(y)" = [x"yn]%'

v
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LSRN NE SN Asymptotic theorems for GRAs

Lagrange inversion

@ Suppose that v(z) = zA(v(z)) with ord A = 0. As usual we have for
each formal power series

/
n["Jo(v(2)) = ly"lyd" (D AW)" = [2"y" 1= 5 —2A®)
@ Assume that A is nonnegative and aperiodic, and analytic at 0. We
extract asymptotics in the direction A = 1, first solving u(4; y0) = 1.

v
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LSRN NE SN Asymptotic theorems for GRAs

Lagrange inversion

@ Suppose that v(z) = zA(v(z)) with ord A = 0. As usual we have for
each formal power series

n[z"]¥(v(2)) = [y"lyd' (v)A(y)" = [xnyn]%.

@ Assume that A is nonnegative and aperiodic, and analytic at 0. We
extract asymptotics in the direction A = 1, first solving u(4; y0) = 1.

@ Provided rad ¢ > yp, we obtain from above

["e(v(=2)) ~ A'(yo)"n 2 bin™

>0

where

o= Yo¥w)
V2m A" (yo)/A(yo)
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b SYPUETE G s o7 Ce
“Implicit” GRA asymptotics: globally smooth case

@ We can just translate the explicit asymptotics using the Lagrangian
form of v.

Theorem

Let (v, ¢) determine a proper RA, and let A(y) be uniquely defined by
v(z) = zA(v(z)). If deg A > 1 then

n —n gn_ kO(v/A(v)) .
[2"]v(2)* ~ vF ™A 22 ( A ) where u(A;v) =1—k/n.

N I University of Auckand
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Further simplification of formulae
Resymmetrizing: Delannoy paths continued

@ Here we have v(z) = (1+2)/(1 — 2), ¢(2) =1/(1 — 2), so
rad ¢ = radv.

Emmmmn
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Further simplification of formulae
Resymmetrizing: Delannoy paths continued

@ Here we have v(z) = (1+2)/(1 — 2), ¢(2) =1/(1 — 2), so
rad ¢ = radv.

e contriby is the minimal positive real solution of 2z = A\(1 — 22). Thus
22 =V1+ X —X=(D —k)/n where D = v/n? + k2, the distance

from the origin.

v
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Further simplification of formulae
Resymmetrizing: Delannoy paths continued

@ Here we have v(z) = (1+2)/(1 — 2), ¢(2) =1/(1 — 2), so
rad ¢ = radv.
o contriby is the minimal positive real solution of 2z = A(1 — 22). Thus

22 =V1+ X —X=(D —k)/n where D = v/n? + k2, the distance
from the origin.
o After some algebra we obtain the leading term asymptotic

n"kk nk
k™D — k(D —n)F\| 2xD(n + k — D)2

uniformly for every a,b such that 0 < a <n/k < b < 0.
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Further simplification of formulae
Resymmetrizing: Delannoy paths continued

@ Here we have v(z) = (1+2)/(1 — 2), ¢(2) =1/(1 — 2), so
rad ¢ = radv.

o contriby is the minimal positive real solution of 2z = A(1 — 22). Thus
22 =V1+ X —X=(D —k)/n where D = v/n? + k2, the distance

from the origin.
o After some algebra we obtain the leading term asymptotic

n"kk nk
k™D — k(D —n)F\| 2xD(n + k — D)2

uniformly for every a,b such that 0 < a <n/k < b < 0.

@ The resymmetrizing performed above is not yet automated.
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Simpler formulae for subgroups of the Riordan group

@ Most RAs in the literature fall into one of three subgroups:
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» associated subgroup: ¢ =1 or Z =0;

Universityof Auckiand

oy «F = =, = @©ac

Mark C. Wilson (CS, UoA) Asymptotics of GRAs



Further simplification of formulae
Simpler formulae for subgroups of the Riordan group

@ Most RAs in the literature fall into one of three subgroups:

» associated subgroup: ¢ =1 or Z =0;
» Bell subgroup: v(z) = 2¢(z) or A(y) =1+ yZ(y);
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@ Most RAs in the literature fall into one of three subgroups:

» associated subgroup: ¢ =1 or Z =0;
» Bell subgroup: v(z) = 2¢(z) or A(y) =1+ yZ(y);
> hitting time subgroup: ¢(z) = u(v; z) or Z(y) = A’(y).
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> hitting time subgroup: ¢(z) = u(v; z) or Z(y) = A’(y).

@ In these cases rad ¢ > rad v, so smooth point analysis applies.
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» Bell subgroup: v(z) = 2¢(z) or A(y) =1+ yZ(y);
> hitting time subgroup: ¢(z) = u(v; z) or Z(y) = A’(y).

@ In these cases rad ¢ > rad v, so smooth point analysis applies.

@ There is a duality between the implicit and explicit formulae that |
don’t yet completely understand.
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Further simplification of formulae
Simpler formulae for subgroups of the Riordan group

@ Most RAs in the literature fall into one of three subgroups:
» associated subgroup: ¢ =1 or Z =0;
» Bell subgroup: v(z) = z¢(2) or A(y) =1+ yZ(y);
> hitting time subgroup: ¢(z) = u(v; z) or Z(y) = A’(y).

@ In these cases rad ¢ > rad v, so smooth point analysis applies.

@ There is a duality between the implicit and explicit formulae that |
don’t yet completely understand.

Asymptotics for subgroups of the Riordan group

Subgroup | Explicit: p(v;xz) =n/k | Implicit: u(A;y) =1—Fk/n
Bell x_”vl‘”lm yk_”A”""lm
Hitting time " k\/m vk*”Anm
Associated z_"vk\/ﬁ vh—n ”m

v
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LGNNI NE A  The nonsmooth case

GRA asymptotics: modifications in the double point case

@ Suppose F' is a generalized aperiodic nonnegative Riordan array and
p:=rad¢ < radwv.

@ Here A = [ord v, 00). Smooth points yield asymptotics only for an
initial subinterval (ord v, 3) of directions. The other directions are all
given by the double point at x = p,y = 1/p.

@ If pis a pole of ¢ then our methods apply directly.

@ Otherwise we may need to rederive results in each case.

o The University of Aucand
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LGNNI NE A  The nonsmooth case

Maximum number of distinct subsequences

o Let a,i be the maximum number of distinct subsequences for a string
of length n over the alphabet {1,2,...,d}.

4
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LGNNI NE A  The nonsmooth case

Maximum number of distinct subsequences

o Let a,i be the maximum number of distinct subsequences for a string
of length n over the alphabet {1,2,...,d}.

e Flaxman, Harrow, Sorkin (EJC, 2004) show that

1
F(z,w) = Zankzw ——p——

This is of Riordan type with ¢(z) =1/(1 — 2) and
v(z) =2+ 22+ -+ 2% Hererad¢ =1 < 0o = radv and ¢ has a
simple pole at 1.

4
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ACTNICIET R NE A The nonsmooth case

Maximum number of distinct subsequences

o Let a,i be the maximum number of distinct subsequences for a string
of length n over the alphabet {1,2,...,d}.

e Flaxman, Harrow, Sorkin (EJC, 2004) show that

1
F(z,w) = Zankzw ——p——

This is of Riordan type with ¢(z) =1/(1 — 2) and
v(z) =2+ 22+ -+ 2% Hererad¢ =1 < 0o = radv and ¢ has a
simple pole at 1.

@ Smooth points with z € (0,1/d) yield asymptotics up to
n/k=(d+1)/2.
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ACTNICIET R NE A The nonsmooth case

Maximum number of distinct subsequences

o Let a,i be the maximum number of distinct subsequences for a string
of length n over the alphabet {1,2,...,d}.

e Flaxman, Harrow, Sorkin (EJC, 2004) show that

1
11—z —2w(l—29)°

F(z,w) = Z a2 WP
n,k

This is of Riordan type with ¢(z) =1/(1 — 2) and
v(z) =2+ 22+ -+ 2% Hererad¢ =1 < 0o = radv and ¢ has a
simple pole at 1.

@ Smooth points with z € (0,1/d) yield asymptotics up to
n/k=(d+1)/2.

@ The double point z = 1 yields asymptotics a,j ~ d* for all
A> (d+1)/2, and ayy, ~ d¥/2 for A = (d +1)/2.

v

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 21 /20



ACTNICIET R NE A The nonsmooth case

Maximum number of distinct subsequences

o Let a,i be the maximum number of distinct subsequences for a string
of length n over the alphabet {1,2,...,d}.

e Flaxman, Harrow, Sorkin (EJC, 2004) show that

1
11—z —2w(l—29)°

F(z,w) = Z a2 WP
n,k
This is of Riordan type with ¢(z) =1/(1 — 2) and
v(z) =2+ 22+ -+ 2% Hererad¢ =1 < 0o = radv and ¢ has a
simple pole at 1.
@ Smooth points with z € (0,1/d) yield asymptotics up to
n/k=(d+1)/2.
@ The double point z = 1 yields asymptotics a,j ~ d* for all
A> (d+1)/2, and any, ~ d*/2 for A = (d + 1)/2.
o In fact a,;, = d* for n/k > d, but a,; < d* for n/k < d.
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Ideas for further work

@ Comparing our variable-k with fixed-k results above, it appears that
uniform asymptotics hold generally for k/n € [0, ¢].

@ In the case ¢ = 1, Drmota has already proved this. We have not yet
tried to do so in general. We would use results of Lladser.

o Completely clarify the duality of asymptotics, and prove the Lagrange
inversion formula using Riordan group automorphisms.

e Find naturally occurring cases not covered by the above results, and
extend the theory to deal with them.
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Removing the hypotheses

@ If v is periodic, contrib will have more than one point, and
cancellation will yield periodic asymptotics. Modifications to the
above are routine.

@ Strange behaviour can occur if we remove the nonnegativity
hypothesis, as exemplified by v = ¢ = 1/(3 — 3z + 2°):

> even in the aperiodic case, there may be more than one contributing
point;
» contributing points need not be on the boundary of the domain of

convergence;
» 02 can be zero at a contributing point (Airy phenomena).

N The Univesiy of Auckiand
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