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The context for this talk

Generalized Riordan arrays: their time has come

Generalized Riordan arrays are ubiquitous, but not always recognized
in the literature. We should use them more systematically, as a
unifying device.

They fit into a much bigger picture of multivariate GF asymptotics,
lattice paths, Lagrange inversion, and the kernel method.

They provide an explicit low-dimensional introduction to the general
mvGF asymptotics project of Pemantle et al.

Their asymptotics are, in most cases, routinely derived, yet some
researchers still use complicated exact formulae that yield no insight.

To find out more, read preprint“Twenty combinatorial examples of
asymptotics from multivariate generating functions”, (soon to be
submitted to SIAM Review).
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The context for this talk

Important background notation

Multivariate sequence a : Nd → C with multivariate generating
function

∑
n a(n)zn, zn := zn1

1 · · · znd
d .

When d = 2, we write F (z, w) =
∑

n,k ankz
nwk.

Radius of convergence of power series f denoted by rad f ; order of
vanishing at 0 is ord f .
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Generalized Riordan arrays Definitions

Riordan arrays

A Riordan array (RA) is an infinite lower triangular complex matrix
M = (ank)n≥0,k≥0 having bivariate generating function

F (z, w) =
∑
n,k

ankz
nwk =

φ(z)

1− wv(z)
; ord(φ) = 0, ord(v) ≥ 1.

Thus ank = [zn]φ(z)v(z)k; columns 0 and 1 determine M .

RAs with ord(v) = 1 (proper RAs) form a group under matrix
multiplication. They are heavily used, especially in Firenze, for
simplifying combinatorial sums.

For us it is just as easy to consider generalized RAs (GRAs), where v
need not vanish at 0. These correspond to non-triangular matrices.
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Generalized Riordan arrays Where do GRAs come from?

Some examples from recent literature

Famous number triangles (Pascal, ballot numbers, ...).

PGFS of sums of IID random variables; discrete renewal equation.

Counting various kinds of restricted words/strings, particularly in
computational biology.

Sprugnoli/Merlini/Verri: bijection with certain generating trees;
waiting patterns for a printer, the tennis ball problem.

Banderier/Flajolet: certain directed walks on the line.

Banderier/Merlini: directed walks on the line with infinite set of
jumps.

Prodinger: tutorial on the kernel method.

Flaxman/Harrow/Sorkin: maximum number of distinct subsequences.
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Generalized Riordan arrays Where do GRAs come from?

Relation with lattice walks

Consider time- and space-homogeneous walks on Z2, defined by a
finite set E = {(ri, si) | i ∈ I} ⊂ N× Z of jumps.

We let ank denote the number of nonnegative walks from (0, 0) to
(n, k), and let F (z, w) =

∑
n,k ankz

nwk.

F generates a GRA if

I si ∈ {−1, 0, 1}, which includes the classical cases

F E = {(0, 1), (1, 0)} (Pascal triangle)
F E = {(0, 1), (1, 0), (1, 1)} (Delannoy paths)
F E = {(1,−1), (1, 1)} (Dyck paths/ballot numbers)
F E = {(1,−1), (1, 0), (1, 1)} (Motzkin paths)
F E = {(1,−1), (2, 0), (1, 1)} (Schröder paths)

I ri = 1,max si = 1 (corresponding to walks on N with steps given by
the si).

In fact every nonnegative proper Riordan array arises in this way with
ri = 1, provided we allow E to be infinite.
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Generalized Riordan arrays Where do GRAs come from?

Relation with the kernel method

Let an =
∑
csan−s be a constant coefficient recurrence. Even nice

boundary conditions can yield nasty generating functions.

The apex is the coordinatewise minimum of the shifts s along with 0.
Bousquet-Mélou & Petkovšek gave an explicit formula in the case
d = 2, and showed that:

I if the apex is (0, 0), then F is rational;
I if the apex is (0,−p) then F is algebraic;
I if the apex has two negative coordinates, F can be non-holonomic.

Most examples in the literature have apex (0, 0) or (0,−1). This
includes all walk examples above, plus everything in Prodinger’s
“Kernel method: a collection of examples”. In this case F is always a
GRA.
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Generalized Riordan arrays Where do GRAs come from?

Relation with the kernel method

Let an =
∑
csan−s be a constant coefficient recurrence. Even nice

boundary conditions can yield nasty generating functions.

The apex is the coordinatewise minimum of the shifts s along with 0.
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Generalized Riordan arrays Where do GRAs come from?

Equivalent ways of describing the Riordan domain

generating function of given type;

exact quasi-power representation, generalized Lagrange inversion;

triangular arrays with “up and to the right” recurrences;

directed lattice paths with small positive jumps;

numbers of nodes in certain generating trees;

constant coefficient linear recurrences with apex (0, 0) or (0,−1);
solutions via the kernel method where only one large branch arises.
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Asymptotics of GRAs Background on the mvGF project

Multivariate asymptotics background and summary

Ongoing work (“the mvGF project”) aims at improving multivariate
coefficient extraction methods. See
www.cs.auckland.ac.nz/~mcw/Research/mvGF/.

The analysis uses residue theory near the singular set V of F .

Asymptotics in a fixed direction λ are determined by the geometry of
V near a finite set, contribλ, of contributing critical points.

contribλ can be computed by algebraic-geometric criteria.

In particular if F (z, w) = G(z, w)/H(z, w), then asymptotics for
aλk,k are controlled by a point solving zHz = λwHw,H = 0.
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Asymptotics of GRAs Background on the mvGF project

How do GRAs fit into the mvGF framework

They are a fairly simple 2-dimensional case, where formulae simplify
considerably.

When v is aperiodic with nonnegative coefficients then

I our method derives (uniform) asymptotics for all possible λ;
I contribλ is always a singleton and lies in the first quadrant;
I if radφ ≥ rad v then all contributing points of V are smooth poles of
F , no matter what the singularity type of v is at z = rad v;

I if radφ < rad v then we also have a contributing double point at
x = radφ, y = 1/v(x).

The aperiodicity constraint can be removed with minor modifications,
but nonegativity is essential.
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Asymptotics of GRAs mvGF asymptotics yield GRA asymptotics

Recall: generic meromorphic asymptotics in dimension 2

Theorem

Let F = G/H be meromorphic in a neighbourhood of the strictly
minimal point P = (z, w) ∈ V.

If P is smooth, then there is a complete asymptotic expansion

aλk,k ∼ (zλw)−kk−1/2
∑
l≥0

bl(λ)k−l,

valid in the direction λ := (zHz)/(wHw), and uniform as (z, w)
varies over a compact set of such points.

If P is a double point, then there is a complete asymptotic expansion

aλk,k ∼ (zλw)−kb0(λ)

uniform in compact subcones of the interior of K(P ). On the
boundary, the asymptotic is smaller by a factor of 2.
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Asymptotics of GRAs mvGF asymptotics yield GRA asymptotics

Simplification of asymptotic formulae in GRA case

In the smooth case, the leading term is

b0 =
φ(x)√

2πsσ2(v;x)
where µ(v;x) = λ.

Here

µ(v;x) =
xv′(x)

v(x)
and

σ2(v;x) =
x2v′′(x)

v(x)
+ µ(v;x)− µ(v;x)2 = xµ′(v;x)

are the mean and variance of the random variable whose PGF is
y 7→ v(xy)/v(x).

In the double point case (where φ has a simple pole), we have

b0(λ) =
−Res(φ; ρ)

ρ
.
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Asymptotics of GRAs Asymptotic theorems for GRAs

“Explicit” GRA asymptotics: globally smooth case

Theorem

Let F be an aperiodic nonnegative GRA with radφ ≥ rad v. Define
∆ = [ord v, deg v]. If λ 6∈ ∆ then aλk,k = 0.

Otherwise there is a unique solution 0 < zλ < rad v to the equation
µ(v; z) = λ. We have

aλk,k ∼ [zλ
λv(zλ)]−kk−1/2

∞∑
l=0

bl(λ)k−l

uniformly in λ away from the boundary of ∆.

The bl(λ) are explicitly computable in terms of derivatives of φ and v.
The leading coefficient is always

b0(λ) =
φ(zλ)√

2πσ2(v; zλ)
.
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Asymptotics of GRAs Asymptotic theorems for GRAs

Examples: lattice paths

Delannoy paths

Here v(z) = (1 + z)/(1− z), φ(z) = 1/(1− z), so radφ = rad v and
above analysis applies.

contribλ is the minimal positive real solution of 2z = λ(1− z2). Thus
zλ =

√
1 + λ2 − λ.

In particular, the number of central Delannoy paths (λ = 1) is

asymptotically (3 + 2
√

2)k cosh( 1
4

log 2)√
πk

.

Motzkin paths

Here v(z) = zφ(z) = (1− z −
√

1− 2z − 3z2)/(2z).

contribλ is the minimal positive real solution of 1− 2z − 3z2 = λ2.
Thus zλ =

√
4λ2 − 3/(3λ).
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Asymptotics of GRAs Asymptotic theorems for GRAs

Lagrange inversion

Suppose that v(z) = zA(v(z)) with ordA = 0. As usual we have for
each formal power series ψ

n[zn]ψ(v(z)) = [yn]yψ′(y)A(y)n = [xnyn]
yψ′(y)

1− xA(y)
.

Assume that A is nonnegative and aperiodic, and analytic at 0. We
extract asymptotics in the direction λ = 1, first solving µ(A; y0) = 1.

Provided radψ > y0, we obtain from above

[zn]ψ(v(z)) ∼ A′(y0)
nn−3/2

∑
l≥0

bln
−l

where

b0 =
y0ψ

′(y0)√
2πA′′(y0)/A(y0)

.
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Asymptotics of GRAs Asymptotic theorems for GRAs

“Implicit” GRA asymptotics: globally smooth case

We can just translate the explicit asymptotics using the Lagrangian
form of v.

Theorem

Let (v, φ) determine a proper RA, and let A(y) be uniquely defined by
v(z) = zA(v(z)). If degA > 1 then

[zn]v(z)k ∼ vk−nAn kφ(v/A(v))√
2πn3σ2(A; v)

where µ(A; v) = 1− k/n.
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Asymptotics of GRAs Further simplification of formulae

Resymmetrizing: Delannoy paths continued

Here we have v(z) = (1 + z)/(1− z), φ(z) = 1/(1− z), so
radφ = rad v.

contribλ is the minimal positive real solution of 2z = λ(1− z2). Thus
zλ =

√
1 + λ2 − λ = (D − k)/n where D =

√
n2 + k2, the distance

from the origin.

After some algebra we obtain the leading term asymptotic

ank ∼
nnkk

(D − k)n(D − n)k

√
nk

2πD(n+ k −D)2

uniformly for every a, b such that 0 < a ≤ n/k ≤ b <∞.

The resymmetrizing performed above is not yet automated.
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Asymptotics of GRAs Further simplification of formulae

Simpler formulae for subgroups of the Riordan group

Most RAs in the literature fall into one of three subgroups:

I associated subgroup: φ = 1 or Z = 0;
I Bell subgroup: v(z) = zφ(z) or A(y) = 1 + yZ(y);
I hitting time subgroup: φ(z) = µ(v; z) or Z(y) = A′(y).

In these cases radφ ≥ rad v, so smooth point analysis applies.

There is a duality between the implicit and explicit formulae that I
don’t yet completely understand.

Asymptotics for subgroups of the Riordan group

Subgroup Explicit: µ(v;x) = n/k Implicit: µ(A; y) = 1− k/n

Bell x−nvk+1 1√
2πkσ2(v;x)

yk−nAn+1 k√
2πn3σ2(A;y)

Hitting time x−nvk n√
2πk3σ2(v;x)

vk−nAn 1√
2πnσ2(A;v)

Associated x−nvk 1√
2πkσ2(v;x)

vk−nAn k√
2πn3σ2(A;v)
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Asymptotics of GRAs The nonsmooth case

GRA asymptotics: modifications in the double point case

Suppose F is a generalized aperiodic nonnegative Riordan array and
ρ := radφ < rad v.

Here ∆ = [ord v,∞). Smooth points yield asymptotics only for an
initial subinterval (ord v, β) of directions. The other directions are all
given by the double point at x = ρ, y = 1/ρ.

If ρ is a pole of φ then our methods apply directly.

Otherwise we may need to rederive results in each case.
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Asymptotics of GRAs The nonsmooth case

Maximum number of distinct subsequences

Let ank be the maximum number of distinct subsequences for a string
of length n over the alphabet {1, 2, . . . , d}.

Flaxman, Harrow, Sorkin (EJC, 2004) show that

F (z, w) =
∑
n,k

ankz
nwk =

1

1− z − zw(1− zd)
.

This is of Riordan type with φ(z) = 1/(1− z) and
v(z) = z + z2 + · · ·+ zd. Here radφ = 1 <∞ = rad v and φ has a
simple pole at 1.

Smooth points with x ∈ (0, 1/d) yield asymptotics up to
n/k = (d+ 1)/2.

The double point x = 1 yields asymptotics ank ∼ dk for all
λ > (d+ 1)/2, and ank ∼ dk/2 for λ = (d+ 1)/2.

In fact ank = dk for n/k ≥ d, but ank < dk for n/k < d.

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 21 / 20



Asymptotics of GRAs The nonsmooth case

Maximum number of distinct subsequences

Let ank be the maximum number of distinct subsequences for a string
of length n over the alphabet {1, 2, . . . , d}.
Flaxman, Harrow, Sorkin (EJC, 2004) show that

F (z, w) =
∑
n,k

ankz
nwk =

1

1− z − zw(1− zd)
.

This is of Riordan type with φ(z) = 1/(1− z) and
v(z) = z + z2 + · · ·+ zd. Here radφ = 1 <∞ = rad v and φ has a
simple pole at 1.

Smooth points with x ∈ (0, 1/d) yield asymptotics up to
n/k = (d+ 1)/2.

The double point x = 1 yields asymptotics ank ∼ dk for all
λ > (d+ 1)/2, and ank ∼ dk/2 for λ = (d+ 1)/2.

In fact ank = dk for n/k ≥ d, but ank < dk for n/k < d.

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 21 / 20



Asymptotics of GRAs The nonsmooth case

Maximum number of distinct subsequences

Let ank be the maximum number of distinct subsequences for a string
of length n over the alphabet {1, 2, . . . , d}.
Flaxman, Harrow, Sorkin (EJC, 2004) show that

F (z, w) =
∑
n,k

ankz
nwk =

1

1− z − zw(1− zd)
.

This is of Riordan type with φ(z) = 1/(1− z) and
v(z) = z + z2 + · · ·+ zd. Here radφ = 1 <∞ = rad v and φ has a
simple pole at 1.

Smooth points with x ∈ (0, 1/d) yield asymptotics up to
n/k = (d+ 1)/2.

The double point x = 1 yields asymptotics ank ∼ dk for all
λ > (d+ 1)/2, and ank ∼ dk/2 for λ = (d+ 1)/2.

In fact ank = dk for n/k ≥ d, but ank < dk for n/k < d.

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 21 / 20



Asymptotics of GRAs The nonsmooth case

Maximum number of distinct subsequences

Let ank be the maximum number of distinct subsequences for a string
of length n over the alphabet {1, 2, . . . , d}.
Flaxman, Harrow, Sorkin (EJC, 2004) show that

F (z, w) =
∑
n,k

ankz
nwk =

1

1− z − zw(1− zd)
.

This is of Riordan type with φ(z) = 1/(1− z) and
v(z) = z + z2 + · · ·+ zd. Here radφ = 1 <∞ = rad v and φ has a
simple pole at 1.

Smooth points with x ∈ (0, 1/d) yield asymptotics up to
n/k = (d+ 1)/2.

The double point x = 1 yields asymptotics ank ∼ dk for all
λ > (d+ 1)/2, and ank ∼ dk/2 for λ = (d+ 1)/2.

In fact ank = dk for n/k ≥ d, but ank < dk for n/k < d.

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 21 / 20



Asymptotics of GRAs The nonsmooth case

Maximum number of distinct subsequences

Let ank be the maximum number of distinct subsequences for a string
of length n over the alphabet {1, 2, . . . , d}.
Flaxman, Harrow, Sorkin (EJC, 2004) show that

F (z, w) =
∑
n,k

ankz
nwk =

1

1− z − zw(1− zd)
.

This is of Riordan type with φ(z) = 1/(1− z) and
v(z) = z + z2 + · · ·+ zd. Here radφ = 1 <∞ = rad v and φ has a
simple pole at 1.

Smooth points with x ∈ (0, 1/d) yield asymptotics up to
n/k = (d+ 1)/2.

The double point x = 1 yields asymptotics ank ∼ dk for all
λ > (d+ 1)/2, and ank ∼ dk/2 for λ = (d+ 1)/2.

In fact ank = dk for n/k ≥ d, but ank < dk for n/k < d.

Mark C. Wilson (CS, UoA) Asymptotics of GRAs 2005-06-08 21 / 20



Extensions

Ideas for further work

Comparing our variable-k with fixed-k results above, it appears that
uniform asymptotics hold generally for k/n ∈ [0, ε].

In the case φ = 1, Drmota has already proved this. We have not yet
tried to do so in general. We would use results of Lladser.

Completely clarify the duality of asymptotics, and prove the Lagrange
inversion formula using Riordan group automorphisms.

Find naturally occurring cases not covered by the above results, and
extend the theory to deal with them.
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Extensions

Removing the hypotheses

If v is periodic, contrib will have more than one point, and
cancellation will yield periodic asymptotics. Modifications to the
above are routine.

Strange behaviour can occur if we remove the nonnegativity
hypothesis, as exemplified by v = φ = 1/(3− 3z + z2):

I even in the aperiodic case, there may be more than one contributing
point;

I contributing points need not be on the boundary of the domain of
convergence;

I σ2 can be zero at a contributing point (Airy phenomena).
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