
May 30, 2007 2:8 WSPC/187-IJQI 00292

International Journal of Quantum Information
Vol. 5, No. 3 (2007) 409–415
c© World Scientific Publishing Company

DE-QUANTIZING THE SOLUTION
OF DEUTSCH’S PROBLEM

CRISTIAN S. CALUDE

Department of Computer Science,
University of Auckland, New Zealand

www.cs.auckland.ac.nz/˜cristian

Received 26 October 2006

Probably the simplest and most frequently used way to illustrate the power of quantum
computing is to solve the so-called Deutsch’s problem. Consider a Boolean function
f : {0, 1} → {0, 1} and suppose that we have a (classical) black box to compute it. The
problem asks whether f is constant [that is, f(0) = f(1)] or balanced [f(0) #= f(1)].
Classically, to solve the problem seems to require the computation of f(0) and f(1), and
then the comparison of results. Is it possible to solve the problem with only one query
on f? In a famous paper published in 1985, Deutsch posed the problem and obtained
a “quantum” partial affirmative answer. In 1998, a complete, probability-one solution
was presented by Cleve, Ekert, Macchiavello and Mosca. Here we will show that the
quantum solution can be de-quantized to a deterministic simpler solution which is as
efficient as the quantum one. The use of “superposition,” a key ingredient of quantum
algorithm, is — in this specific case — classically available.

Keywords: Deutsch problem; Deutsch quantum solution; embedding; superposition.

1. Introduction

Consider a Boolean function f : {0, 1} → {0, 1} and suppose that we have a black
box to compute it. Deutsch’s problem asks to test whether f is constant [that is,
f(0) = f(1)] or balanced [f(0) "= f(1)] allowing only one query on the black box
computing f .

Our aim is to show a simple deterministic classical solution to Deutsch’s prob-
lem. To be able to compare the quantum and classical solutions, we will present
both solutions in detail.

2. The Quantum Solution

The quantum technique is to “embed” the classical computing box (given by f) into
a quantum box, then use the quantum device on a “superposition” state, and finally
make a single measurement of the output of the quantum computation. This tech-
nique was proposed by Deutsch in a famous paper2; the problem was extended
by Deutsch and Josza3 and fully solved with probability one by Cleve, Ekert,
Macchiavello and Mosca1 (see Ref. 4 or 6).

409

May 30, 2007 2:8 WSPC/187-IJQI 00292

410 C. S. Calude

Suppose that we have a quantum black box to compute fQ which extends f
from {0, 1} to the quantum (Hilbert) space generated by the base {|0〉, |0〉}. This
means that f(0) = fQ(|0〉) and f(1) = fQ(|1〉). The quantum computation of fQ

will be done using the transformation Uf which applies to two qubits, |x〉 and |y〉,
and produces |x〉|y⊕f(x)〉 (⊕ denotes the sum modulo 2). This transformation flips
the second qubit if f acting on the first qubit is 1, and does nothing if f acting on
the first qubit is 0.

Here is a standard mathematically formulation of the quantum algorithm. Start
with Uf and evolve it on a superposition of |0〉 and |1〉. Assume first that the second
qubit is initially prepared in the state 1√

2
(|0〉 − |1〉). Then,

Uf

(
|x〉 1√

2
(|0〉 − |1〉)

)
= |x〉 1√

2
(|0 ⊕ f(x)〉 − |1 ⊕ f(x)〉)

= (−1)f(x)|x〉 1√
2
(|0〉 − |1〉).

Next, take the first qubit to be 1√
2
(|0〉+ |1〉). The quantum black box will produce

Uf

(
1√
2
(|0〉 + |1〉) 1√

2
(|0〉 − |1〉)

)
=

1
2
(−1)f(0)(|0〉 + (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉).

(1)

Next, perform a measurement that projects the first qubit onto the basis
1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉).

We will obtain 1√
2
(|0〉 − |1〉) if the function f is balanced and 1√

2
(|0〉 + |1〉) in the

opposite case.
To better understand the action of (1), we will present Uf in matrix form as:

Uf =

1 − f(0) f(0) 0 0
f(0) 1 − f(0) 0 0

0 0 1 − f(1) f(1)
0 0 f(1) 1 − f(1)

 .

Whatever the values of f(0) and f(1), the matrix Uf is unitary, so Uf is a legitimate
quantum black box. Next, we are going to use the Hadamard transformation H to
generate a superposition of states:

H =

1
2

1
2

1
2

1
2

1
2

−1
2

1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

−1
2

−1
2

1
2

.

May 30, 2007 2:8 WSPC/187-IJQI 00292

De-Quantizing the Solution of Deutsch’s Problem 411

Here is the quantum algorithm solving Deutsch’s problem:
1. Start with a closed physical system prepared in the quantum

state |01〉.
2. Evolve the system according to H.
3. Evolve the system according to Uf.
4. Evolve the system according to H.
5. Measure the system. If the result is the second possible

output, then f is constant; if the result is the fourth
possible output, then f is balanced.

To prove the correctness of the quantum algorithm, we shall show that the first and
third possible outputs can be obtained with probability zero, while one (and only
one) of the second and the fourth outcomes will be obtained with probability one,
and the result solves correctly Deutsch’s problem.

To this aim, we follow step-by-step the quantum evolution described by the
above algorithm.

In Step 1, we start with a closed physical system prepared in the quantum
state |01〉:

V =

0
1
0
0

 .

After Step 2, the system has evolved into the state (which is independent of f):

HV =

1
2

1
2

1
2

1
2

1
2

−1
2

1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

−1
2

−1
2

1
2

×

0
1
0
0

 =

1
2

−1
2
1
2

−1
2

.

After Step 3, the quantum system is in the state (which depends upon f):

UfHV =

1 − f(0) f(0) 0 0

f(0) 1 − f(0) 0 0

0 0 1 − f(1) f(1)

0 0 f(1) 1 − f(1)

×

1
2

−1
2
1
2

−1
2

=

1
2
− f(0)

−1
2

+ f(0)

1
2
− f(1)

−1
2

+ f(1)

.

May 30, 2007 2:8 WSPC/187-IJQI 00292

412 C. S. Calude

After Step 4, the quantum state of the system has become:

HUfHV =

1
2

1
2

1
2

1
2

1
2

−1
2

1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

−1
2

−1
2

1
2

×

1
2
− f(0)

−1
2

+ f(0)

1
2
− f(1)

−1
2

+ f(1)

=

0

1 − f(0) − f(1)
0

f(1) − f(0)

.

Finally, in Step 5, we measure the current state of the system, that is, the state
HUfHV , and we get:

1. output 1 with probability p1 = 0,
2. output 2 with probability p2 = (1 − fQ(|0〉) − fQ(|1〉))2,
3. output 3 with probability p3 = 0,
4. output 4 with probability p4 = (fQ(|1〉) − fQ(|0〉))2.

To conclude:

• if fQ(|0〉) = fQ(|1〉), then f(0)+f(1) = 0 (mod 2), f(1)−f(0) = 0; consequently,
p2 = 1, p4 = 0,

• if fQ(|0〉) "= fQ(|1〉), then f(0) + f(1) = 1, f(1) − f(0) = −1 or f(1) − f(0) = 1;
consequently, p2 = 0, p4 = 1,

• the outputs 1 and 3 have each probability zero.

Deutsch’s problem was solved with only one use of Uf . The solution is probabilistic,
and the result is obtained with probability one. Its success relies on the following
three facts:

• the “embedding” of f into fQ (see also the discussion in Ref. 5, end of Sec. C,
p. 11),

• the ability of the quantum computer to be in a superposition of states: we can
check whether fQ(|0〉) is equal or not to fQ(|1〉) not by computing fQ on |0〉) and
|1〉, but on a superposition of |0〉) and |1〉, and

• the possibility to extract the required information with just one measurement.

3. De-Quantizing the Quantum Algorithm for Deutsch’s Problem

We de-quantize Deutsch’s algorithm in the following way. We consider Q the set
of rationals, and the space Q[i] = {a + bi | a, b ∈ Q}, (i =

√
−1). We embed the

original function f in Q[i] and we define the classical analogue Cf of the quantum

May 30, 2007 2:8 WSPC/187-IJQI 00292

De-Quantizing the Solution of Deutsch’s Problem 413

evolution Uf acting from Q[i] to itself as follows [compare with the formula (1)]:

Cf (a + bi) = (−1)0⊕f(0)a + (−1)1⊕f(1)bi. (2)

The four different possible bit-functions f induce the following four functions Cf

from Q[i] to Q[i] (x̄ is the conjugate of x):

C00(x) = x̄, if f(0) = 0, f(1) = 0,

C01(x) = x, if f(0) = 0, f(1) = 1,

C10(x) = −x, if f(0) = 1, f(1) = 0,

C11(x) = −x̄, if f(0) = 1, f(1) = 1.

Deutsch’s problem becomes the following:

A function f is chosen from the set {C00, C01, C10, C11} and the problem is to
determine, with a single query, which type of function it is, balanced or constant.

The following deterministic classical algorithm solves the problem:

Given f, calculate (i − 1) × f(1 + i). If the result is real, then the
function is balanced; otherwise, the function is constant.

Indeed, the algorithm is correct because, if we calculate (i − 1) × f(1 + i), we get:

(i − 1) × C00(1 + i) = (i − 1)(1 − i) = 2i,

(i − 1) × C01(1 + i) = (i − 1)(1 + i) = −2,

(i − 1) × C10(1 + i) = (i − 1)(−1 − i) = 2,

(i − 1) × C11(1 + i) = (i − 1)(i − 1) = −2i.

If the answer is real, then the function is balanced, and if the answer is imaginary,
then the function is constant.

Actually, there are infinitely many similar solutions, namely, for every rational
a "= 0:

Given f, calculate a(i − 1) × f(1 + i). If the result is real, then the
function is balanced; otherwise, the function is constant.

Given f, calculate a(i + 1) × f(1 + i). If the result is real, then the
function is constant; otherwise, the function is balanced.

Of course, Q[i] plays no special role “by itself” in the above solution. The explana-
tion is not deep, just the fact that classical bits are one-dimensional while complex
numbers are two dimensional. Thus, one can have “superpositions” of different basis
vectors.

Two dimensionality can be obtained in various other simpler ways. For exam-
ple, we can choose as space the set Z[

√
2] = {a + b

√
2 | a, b ∈ Z}, where

May 30, 2007 2:8 WSPC/187-IJQI 00292

414 C. S. Calude

a + b
√

2 = a − b
√

2. Using a similar embedding function as (2), Cf (a + b
√

2) =
(−1)0⊕f(0)a + (−1)1⊕f(1)b

√
2, now acting on Z[

√
2], we get the solutiona:

Given f, calculate (
√

2−1)×f(1+
√

2). If the result is rational, then
the function is balanced; otherwise, the function is constant.

The correctness follows from the simple calculation of (
√

2 − 1) × f(1 +
√

2):

(
√

2 − 1) × C00(1 +
√

2) = (
√

2 − 1)(1 −
√

2) = 2
√

2 − 3,

(
√

2 − 1) × C01(1 +
√

2) = (
√

2 − 1)(1 +
√

2) = 1,

(
√

2 − 1) × C10(1 +
√

2) = (
√

2 − 1)(−1 −
√

2) = −1,

(
√

2 − 1) × C11(1 +
√

2) = (
√

2 − 1)(
√

2 − 1) = 3 − 2
√

2.

If the answer is rational, then the function is balanced, and if the answer is irrational,
then the function is constant. We can classically distinguish between 1 and 3−2

√
2

because
√

2 is computable.
So, again, the technique of “embedding” and “superposition” produces the

desired result; this time, the computation is not only classical and simpler, but
also deterministic.

4. Conclusion

We have shown a classical simple way to de-quantize the quantum solution for the
Deutsch’s problem. The same quantum technique, embedding plus computation on
a “superposition,” leads to a classical solution which is as efficient as the quantum
one. Moreover, the quantum solution is probabilistic, while the classical solution is
deterministic.

How does the classical solution compare with the quantum one in terms of
physical resources? A simple analogical scheme can implement the classical solution
with two registers each using a real number as in the quantum case when we need
just two qubits. However, a more realistic analysis should involve the complexity of
the black box, the complexity of the implementation of the embedding, as well as
the complexity of the query performed.

The downside is that the superposition does not scale with the idea below. It is
not difficult to obtain a similar solution for fixed n, but not uniformly (in each case
a different function is used). Of course, uniformly the solution discussed in this note
is not scalable, because n qubits can represent 2n states at the same time, which
outgrows any linear function of n (see Ref. 3).

Due to the fact that the number of efficient quantum algorithms is still extremely
small, one can speculate that, in practice, “hybrid-like” algorithms may be prefer-
able to pure quantum algorithms.

aIn fact, we do not need the whole set Z[
√

2], but its finite subset {a + b
√

2 | a, b ∈ Z, |a|, |b| ≤ 3}.

May 30, 2007 2:8 WSPC/187-IJQI 00292

De-Quantizing the Solution of Deutsch’s Problem 415

Acknowledgment

The author is indebted to Mike Stay for illuminating discussions and criticism
which contributed essentially to this note. He thanks Vladimir Buzek, Jozef
Gruska, Rossella Lupacchini, and Karl Svozil for various useful comments, specifi-
cally regarding “implementation” as a way to compare the quantum and classical
solutions.

References

1. R. Cleve, A. Ekert, C. Macchiavello and M. Mosca, Quantum algorithms revisited,
Proc. Roy. Soc. London A 454 (1998) 339–354.

2. D. Deutsch, Quantum theory, the Church–Turing principle, and the universal quantum
computer, Proc. Roy. Soc. London A 400 (1985) 97–117.

3. D. Deutsch and R. Jozsa, Rapid solutions of problems by quantum computation, Proc.
Roy. Soc. London A 439 (1992) 553.

4. J. Gruska, Quantum Computing (McGraw-Hill, London, 1999).
5. D. Mermin, Quantum computation lecture notes and homework assignments,

Chap. 2, Cornell University (Spring 2006), http://people.ccmr.cornell.edu/ ˜mermin/
qcomp/chap2.pdf, accessed on 7 October 2006.

6. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information
(Cambridge University Press, Cambridge, 2001).

