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Abstract

Heart diseases cause considerable morbidity and the prognosis af-
ter heart failure is poor. An improved understanding of cardiac
mechanics is necessary to advance the diagnosis and treatment of
heart diseases. This paper presents techniques for visualizing and
evaluating biomedical finite element models and demonstrates their
application by using as an example models of a healthy and a dis-
eased human left ventricle. The following contributions are made:
we apply techniques traditionally used in solid mechanics and com-
putational fluid dynamics to biomedical data and suggest some im-
provements and modifications. We introduce a novel algorithm for
computing isosurfaces for scalar fields defined over curvilinear fi-
nite elements. We obtain new insight into the mechanics of the
healthy and the diseased left ventricle and we facilitate the under-
standing of the complex deformation of the heart muscle by novel
visualizations.
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1 Introduction

Heart diseases remain the biggest killer in the western world [Ma-
sood et al. 2000]. Heart diseases can result in heart failure, which
is a clinical syndrome that arises when the heart is unable to pump
sufficient blood to meet the metabolic needs of the body at normal
filling pressures [Alexander et al. 1994]. The acquisition and vi-
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sualization of cardiac imaging data improves the diagnosis and the
understanding of the development and progress of heart diseases.

The cardiac data set used in this work is a finite element model
of the human left ventricle developed by Young et al. [Young
et al. 1994b; Young et al. 1994a]. The deformation of the my-
ocardium (heart muscle) is represented by the strain tensor. We use
a visualization toolkit specifically designed for biomedical models
[Wünsche 2003b; Wünsche 2003a] to visualize the strain tensor
field and to evaluate the performance of a healthy and a diseased
human left ventricle.

After introducing the left-ventricular model we visualize left-
ventricular deformation by applying visualization techniques from
computational fluid dynamics (CFD) and structural engineering to
the biomedical field. We suggest several modifications and im-
provements, present a new method for computing topologically cor-
rect isosurfaces from scalar fields defined over curvilinear finite el-
ement domains, and we explain the interpretation of the visualiza-
tions. We conclude with a discussion of our results and mention
avenues for future research.

2 Finite Element Modeling of the Left Ven-
tricle

As shown in figure 1 (a) the heart consists of two main chambers,
the left and the right ventricle. When discussing the heart it is
convenient to introduce names for the different regions of the my-
ocardium (heart muscle) as illustrated in part (b) the figure. Note
that the myocardium is divided into a subepicardial, subendocar-
dial, and a midmyocardial region. The terms refer to the parts of
the myocardium neighboring the epicardial surface (the outer layer
of the heart muscle), the endocardial surface (the layer lining the
ventricular cavity), and the region between them, respectively.

The contraction of the heart is called systole and the expansion
diastole. The moment of maximum contraction of the left ventricle
is called (left-ventricular) end-systole and the moment of maximum
expansion is called (left-ventricular) end-diastole.

2.1 Finite-Element Geometry

The geometry of a finite element (FE) model is described by a set
of nodes and a set of elements, which have these nodes as vertices.
The nodal coordinates are interpolated over an element using inter-
polation functions. Curvilinear elements can be defined by specify-
ing nodal derivatives.

As an example of a finite element consider the cubic Hermite-
linear Lagrange element in two dimensions shown in figure 2. We
first specify a parent element, shown in part (a) of the figure, which
is a square in the ξ -parameter space (material space). The coor-
dinates ξi (0 ≤ ξ1,ξ2 ≤ 1) are called the element or material co-
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Figure 1: (a) Schematic drawing of a heart with the left (LV) and the
right (RV) ventricle being indicated. (b) Illustration of the regions
of the left-ventricular myocardium. (c,d) Long axis (LA) and short
axis (SA) tagged MRI images of a heart with the endocardial and
the epicardial surface indicated in yellow.

ordinates. The value of some variable u (e.g., temperature) at the
material coordinates ξ is defined by interpolating the nodal val-
ues ui. In our example we assume that derivatives in ξ1-direction(

∂u
∂ξ1

)
i
(i = 1, . . . ,4) are specified at the element nodes, enabling

a cubic Hermite interpolation to be performed in that direction. A
linear interpolation is performed in the ξ2-direction.
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Figure 2: A cubic Hermite-linear Lagrange finite element.

The cubic Hermite-linear interpolation of u over the entire 2D pa-
rameter space is then defined by the tensor products of the interpo-
lation functions in each parameter direction:

u(ξ1,ξ2) = H0
1 (ξ1)L1(ξ2)u1 +H0

2 (ξ1)L1(ξ2)u2

+ H0
1 (ξ1)L2(ξ2)u3 +H0

2 (ξ1)L2(ξ2)u4

+ H1
1 (ξ1)L1(ξ2)

(
∂u
∂ξ1

)
1
+H1

2 (ξ1)L1(ξ2)
(

∂u
∂ξ1

)
2

+ H1
1 (ξ1)L2(ξ2)

(
∂u
∂ξ1

)
3
+H1

2 (ξ1)L2(ξ2)
(

∂u
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where
L1(ξ ) = 1−ξ , and L2(ξ ) = ξ (1)

are the one-dimensional linear Lagrange basis functions, and

H0
1 (ξ ) = 1−3ξ 2 +2ξ 3, H1

1 (ξ ) = ξ (ξ −1)2

H0
2 (ξ ) = ξ 2(3−2ξ ), H1

2 (ξ ) = ξ 2(ξ −1) (2)

are the one-dimensional cubic Hermite basis functions.
The geometry of an element in world coordinates (figure 2 (b)) is

obtained by specifying the world-coordinates vi and the ξ1-tangents(
∂v
∂ξ1

)
i
(i = 1, . . . ,4) of the element vertices and interpolating them

as above.

2.2 The Left-Ventricular Finite Element Model

The time-varying geometry of the left-ventricular model is obtained
non-invasively by tracking myocardial contours on tagged MRI
slices and by fitting a surface through them as indicated in figure 4
[Young et al. 1995]. The resulting finite element model consists
of 16 finite elements with its geometry being interpolated in ra-
dial direction using linear Lagrange basis functions and in the cir-
cumferential and longitudinal directions using cubic Hermite basis
functions.

Model geometries were generated for the maximum expan-
sion (end-diastole) and maximum contraction (end-systole) and are
shown in figure 3.

Figure 3: The finite element model of the left ventricle at end-
diastole (a) and end-systole (b).

In addition the cavities of each model can be represented by finite
elements which is useful for computing ventricular performance
measures [Wünsche and Young 2003; Wünsche 2003a]. Exam-
ples are seen in figure 5 which shows the model of a healthy left
ventricle (a) and the model of a heart diagnosed with non-ischemic
dilated cardiomyopathy (b), which is characterized by cardiac en-
largement, increased cardiac volume, reduced ejection fraction, and
congestive failure [Young et al. 2000].

2.3 Myocardial Strain

Causes of heart failure are differentiated into mechanical, myocar-
dial, and rhythmic abnormalities [Alexander et al. 1994]. Examples
are increased pressure or volume load (e.g., due to a dysfunctional
valve), ischemia (blockage of the coronary artery) and conduction
disturbances including standstill and irregular heart beat (fibrilla-
tion). The analysis of myocardial function is important for the di-
agnosis of heart diseases, the planning of therapy [Lim and Choi
1999] and the understanding of the effect of cardiac drugs on re-
gional function [Reichek 1999].

Many cardiac disorders result in regionally altered myocardial
mechanics. Traditionally an abnormal contractile function of the
ventricles has been determined by measuring the wall thickening
using cine MRI images, echocardiography and SPECT [Alexander



Figure 4: Tag lines before (a) and after (b) myocardial contraction and the fitted epicardial and endocardial surface (c).

Figure 5: Ventricular cavity of the healthy heart (a) and the sick
heart (b) at end-diastole (left) and end-systole (right).

et al. 1994]. Wall thickening, however, is only one indicator of im-
pending heart failure and other motion dependent indicators have
been reported in the literature [de Simone et al. 1996; Guttman
et al. 1997]. A full description of the deformation behavior of the
myocardium is therefore desirable. Such a description is given by
the (Lagrangian) strain tensor E.

Strain information is obtained from tagged MRI images as
shown in figure 4. When the heart deforms the tag lines deform with
it making it possible to compute the displacement field u [Young
et al. 1994a]. The (Lagrangian) strain tensor E is computed from
the displacement gradient tensor ∇u using the equation

E =
1
2

(
(∇u)+(∇u)T +(∇u)T (∇u)

)
(3)

The tensor describes the pure deformation of an infinitesimal ma-
terial volume without rotation and translation. Scalar strain values
can be derived from the strain tensor to quantify the length change
of an infinitesimal material volume in a given direction (e.g., the
circumferential or radial direction of the ventricle). Negative strain
values are interpreted as a local shortening of the myocardium and
positive strain values as a local elongation. The strain tensor is de-
fined with respect to the material coordinate system, i.e., the diago-
nal components of the strain tensor represent the normal strains in
the circumferential, longitudinal and radial directions, respectively.
The computation of the strain field was validated using a gel phan-
tom [Young et al. 1995].

Since the strain tensor E is symmetric there always exist 3 eigen-
values λi and 3 mutually perpendicular eigenvectors vi such that
[Lai et al. 1986]

Evi = λivi i = 1,2,3 (4)

The eigenvectors v1, v2, and v3 of E are the principal directions of
the strain, i.e., the directions in which there is no shear strain. The
eigenvalues λ1, λ2, and λ3 are the principal strains and give the unit
elongations in the principal directions. The maximum, medium,
and minimum eigenvalue are called the maximum, medium, and
minimum principal strain, respectively.

Abnormalities in the myocardial strain are detectable before first
symptoms of a heart attack occur [Guttman et al. 1997] so that mea-
suring and visualizing the strain might represent a useful diagnosis
tool. McCulloch and Mazhari [McCulloch and Mazhari 2001] sug-
gest several possible roles of strain and stress measurement in clin-
ical diagnosis.

3 The Visualization of Myocardial Strain

Using the finite element models in figure 5 it is possible to compute
the end-diastolic volume (volume of blood at maximum expansion)



and the stroke volume (volume of blood ejected during contraction)
for the healthy and the diseased heart [Wünsche and Young 2003;
Wünsche 2003a]. For the diseased heart a considerable larger end-
diastolic volume is observed. However, the stroke volume is only
36.23cm3 and about 30% smaller than for the healthy heart. These
values indicate a severe impairment of myocardial function.

In order to better understand the local deformation of the my-
ocardium more information is required. This section presents and
explains various visualizations of the strain tensor and of quantities
derived from it. Most visualization methods in this section visual-
ize the strain tensor by using its principal directions and principal
strains explained in subsection 2.3.

3.1 Color Mapping

A popular method for visualizing scalar fields over 2D domains is
color mapping which associates a range of scalar field values with
a color spectrum. The domain of the scalar field in then rendered in
the appropriate colors.

Our visualization toolkit contains a global list of color maps
which can be used for multiple icons of the same or different mod-
els. In order to minimize artifacts due to color interpolation the
color maps are implemented using a one-dimensional texture map.
This enables us to create color map markers [Wünsche 2003b].
Markers are inserted into the color spectrum at user defined field
values and appear as isocontours on a color mapped surface as il-
lustrated in figure 6 (a). The image visualizes the strain in the radial
direction on the endocardial surface. The marker represents the 0-
isocontour and it can be seen that the subendocardial wall thickens
almost everywhere.

Figure 6: The radial strain field on the endocardial surface visual-
ized using a color map with a color marker indicating zero strain
values (a) and a cyclical color map (b). The septal wall is indicated
by a yellow sphere.

Additional information can be revealed by using cyclical color
maps which map several cycles of a color spectrum over the spec-
ified field range. We have found cyclical color maps are especially
useful for displaying the fine structure of a scalar field and to un-
cover symmetries and discontinuities [Wünsche 2003a]. Figure 6
(b) shows clearly C1-discontinuities in the radial strain field across
some element boundaries which are not visible in (a). After dis-
cussing this observation with the developers of the heart model we
found that the technique used for fitting the strain field to the finite
elements guarantees only C0-continuity.

Also note that the contour density and contour normal direction
of the resulting surface texture indicate the magnitude and direction,
respectively, of the visualized scalar field.

3.2 Displacement Field Visualization

The movement of the heart during contraction can be studied by
visualizing the displacement field between end-diastole and end-

systole. Figure 7 (a) indicates the displacement at selected material
points with red arrows. It can be seen that the heart moves during
contraction towards the apex.

In order to analyze rotational movements we project the dis-
placement vectors onto a radial-circumferential material plane. The
results visualized in figure 7 (b) illustrate that the apex rotates over-
all anticlockwise (apex-to-base view) whereas the base moves in
the radial direction.

Figure 7: The displacement field of the contracting left ventricle
visualized using vector arrows (a) and vector arrows projected onto
a radial-circumferential material plane (b).

3.3 Tensor Ellipsoids

Figure 8 shows tensor ellipsoids which visualize the full tensor in-
formation at regular sample points throughout the midmyocardium.
Tensor ellipsoids encode the principal directions and strains by the
directions and lengths, respectively, of the axes of the ellipsoid. In
order to encode the sign of an eigenvalue we divide an ellipsoid
into six segments using a hexagonal subdivision of the unit sphere
(see insert of figure 8). A red segment indicates expansion and a
blue segment indicates contraction. Ellipsoids are formed by scal-
ing the unit sphere with the eigenvalues of the visualized tensor and
by rotating it using a coordinate transformation matrix which has
the corresponding normalized eigenvectors as columns.

Note that the 3D geometry is difficult to perceive from a static
image. Rotating the model enables the brain to differentiate ellip-
soids in the foreground and background. Consequently our toolkit
incorporates a function to animate the trackball which is used to
rotate the model.

Figure 8: The strain field in the mid-wall of the healthy (left) and
diseased (right) left ventricle visualized using tensor ellipsoids. The
septal wall is indicated by a yellow sphere.



Figure 8 shows that for the healthy ventricle the myocardium
expands in the radial direction (wall thickening) and contracts in the
longitudinal and circumferential direction with the circumferential
contraction being in general larger. The contraction is smallest in
the septum and largest in the free wall. The results correspond well
with measurements reported in the literature [Young et al. 1994a;
Guttman et al. 1997].

The deformation of the sick ventricle is highly abnormal.
Whereas the anterior-lateral wall of the ventricle displays an almost
normal deformation behavior, albeit with smaller strain values, the
situation is the exact opposite in the septal wall of the ventricle.
Here the myocardium is contracting in the radial direction and is
expanding in the circumferential and longitudinal direction.

3.4 Streamlines

While tensor ellipsoids contain the complete tensor information the
resulting visualizations suffer from visual cluttering. Furthermore
information is only displayed at selected sample points. A continu-
ous representation of a vector field (e.g., an eigenvector field) along
a line is obtained by using streamlines which are at each point tan-
gential to the underlying vector field. Mathematically a streamline
can be described as an integral curve x(s) which satisfies

dx
ds

= v(x(s)) , x(0) = x0 (5)

where v(x) is a vector field and the initial condition x(0) defines the
starting point x0 of the streamline.

In general the above system of equations has no analytic solu-
tion and is solved by numerical integration. Standard techniques
for streamline integration include fixed step size integrators such as
the Euler, Midpoint or Runge-Kutta method. A faster computation
can be achieved by adaptive step size integration [Press et al. 1992;
Hairer et al. 1993]. If the step size is too large or the curvature is
too high a dense sampling of the streamline might be required in or-
der to obtain a good visual approximation of it. The sampling can
be performed as a post-integration interpolation step [Stalling and
Hege 1995] or by using a specialized integrator which produces an
interpolation from the integration information [Hairer et al. 1993,
pp.176].

Figure 9: The strain field in the healthy (left) and the diseased
(right) left ventricle visualized using streamlines in the direction of
the major principal strain. The septal wall is indicated by a yellow
sphere.

Figure 9 uses color mapped streamlines to visualize the direc-
tion and magnitude of the major principle strain. The gray color
marker indicates zero strain values. Note that eigenvector fields are
unsigned (i.e., eigenvectors have a direction but not an orientation)

and that therefore streamlines must be integrated in both the posi-
tive and the negative direction of the eigenvector field.

Streamlines are rendered as thin tubes with a constant diameter
rather than as lines. Illuminating these tube-like structures gives
important shape and depth cues which aid their 3D perception. We
also render the endocardial wall (in gray) in order to reduce visual
cluttering caused by the overlap of streamlines in the foreground
and the background.

The image on the left of figure 9 shows clearly that for the
healthy heart the major principal strain is oriented in the radial di-
rection throughout the myocardial wall and that it is positive and
increases toward the endocardium. This observation is consistent
with an increased wall thickening towards the endocardium.

The image on the right of figure 9 confirms the previously iden-
tified abnormal contraction of the diseased left ventricle. The di-
rection of the major principal strain is normal in the lateral wall,
however, the magnitude of the major principal strain in the inferior-
lateral wall is considerably smaller than for the healthy heart and
is negative in some regions (indicating a wall thinning instead of a
wall thickening). In the septal wall of the diseased heart the maxi-
mum principal strain is oriented in the longitudinal and the circum-
ferential directions rather than in the radial direction.

3.5 Hyperstreamlines

Streamlines encode only one eigenvector. A continuous representa-
tion of the complete strain tensor along a line is achieved by using
hyperstreamlines [Delmarcelle and Hesselink 1993].

Figure 10: The strain field in the mid-wall of the healthy (left) and
the diseased (right) left ventricle visualized using hyperstreamlines
in the direction of the major (top) and minor (bottom) principal
strain. The septal wall is indicated by a yellow sphere.

The trajectory of a hyperstreamline is a streamline in an eigen-
vector field as described in the previous subsection. The other two



eigenvectors and corresponding eigenvalues of the strain tensor de-
fine the axes and lengths of the ellipsoidal cross section of the hy-
perstreamline. The remaining eigenvalue is color mapped onto the
hyperstreamline.

Figure 10 shows hyperstreamlines in the direction of the major
and minor principal strain, respectively. The image on the top left of
the figure shows again that for the healthy heart the major principal
strain is oriented in the radial direction throughout the myocardial
wall and that it is positive and increases toward the endocardium.
Furthermore it can be seen from the diameter of the cross section
of the hyperstreamline that with the exception of the septal wall the
magnitude of the transverse strains increases from the epicardial to
the endocardial surface. We are not aware of any previous work
showing all these properties with a single image.

The minimum principal strain of the healthy left ventricle is
compressive throughout most of the myocardium and over most of
the myocardium its direction resembles a spiral moving toward the
apex. This strain direction corresponds well with the motion of the
heart described in the medical literature: The septum performs ini-
tially an anticlockwise rotation (apex-base view) but later a more
radial movement. The apex rotates overall anticlockwise whereas
the base rotates clockwise. The anterioseptal regions of the mid
and apical levels and the posterioseptal region of the base perform
a hook-like motion because of a reversal of rotation [Young et al.
1994a].

Note that we have in the inferior-septal region an interesting fea-
ture where the hyperstreamlines change suddenly their direction.

It is important to mention that in general the myocardium is con-
sidered incompressible. However, Denney and Prince estimate that
small volume changes up to 10% occur due to myocardial perfu-
sion [Denney, Jr. and Prince 1995]. Hence the myocardium might
contain regions for which all principal strains have the same sign.

3.6 Line Integral Convolution

The above described feature where hyperstreamlines change direc-
tion can be examined in more detail using a line integral convolu-
tion texture.

Line Integral Convolution (LIC) is an effective method to visual-
ize vector fields by using curvilinear filters to locally blur an input
noise texture I along a vector field v. The steps of the algorithm,
as originally proposed by Cabral and Leedom [Cabral and Leedom
1993], are indicated in figure 11.

For any pixel I(q,r) of the input texture the center p0 of it is
used as the center of a streamline which is advected forwards and
backwards by a length L. The pixels covered by the streamline are
hence in forward direction

pi = pi−1 +
v(pi−1)
‖v(pi−1)‖

∆si−1

where ∆si−1 is the distance to the pixel boundary and si+1 = si +
∆si. Pixels covered in backward direction are defined similarly and
are indicated by negative indices. For each line segment [si,si+1] of
the streamline covering pixel pi an exact integral of the convolution
kernel k(w) is computed and used as weight in the LIC

hi =
∫ si+∆si

si

k(w)dw

The output pixel O(q,r) is then given by

O(q,r) =
∑l

i=−l′ I(pi)hi

∑l
i=−l′ hi

where l and l′ are chosen such that the ∑l
i=−l′ si = 2L. Vector mag-

nitude is represented either by using color mapping or by varying
the length L of the filter kernel.

Parameters influencing the quality of the output texture are the
input texture, the filter kernel, and the convolution length L. Most
authors employ an input texture based on white noise which has a
constant power spectrum and is completely random. Aliasing ef-
fects due to high frequency components in the white noise texture
can be reduced by low-pass filtering the input texture [Cabral and
Leedom 1993]. Stalling and Hege [Stalling and Hege 1995] suggest
a modification of LIC called Fast LIC (FLIC) which is an order of
magnitude faster, more accurate and resolution independent.

We use the direction of the minor principal strain as a vector field
and use its magnitude to color map the texture. Additional details
are found in [Wünsche 2003a].

Figure 12: The minor principal strain (maximum contracting strain)
of the healthy (a) and sick (b) heart visualized using Line Integral
Convolution. The magenta colored points and lines indicate degen-
erate points.

Figure 12 (a) shows that the maximum compressive strain in the
midmyocardium of the healthy heart is predominantly oriented in
the circumferential direction with a slight downward tilt. Several
interesting points exist where the strain suddenly changes direction.
Results from tensor analysis show that these points are degenerate
points for which at least two eigenvalues are equal [Delmarcelle
and Hesselink 1994]. Two such a points are indicated by magenta
colored disks in the enlarged region shown on the right hand side
of the image. We found that most of the degenerate points occur on
or near the septal wall. The unusual variations in strain orientation
might be caused by the right ventricular wall which is connected to
the left ventricular wall at both sides of the septum.

In contrast the strain field of the sick heart contains considerably
more degenerate points distributed throughout the myocardium.
The enlargement on the right hand side of the figure shows the pres-
ence of a line for which each point on it is a degenerate point.
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Figure 11: Vector field with a streamline through the pixel with the center p0 (left), white noise texture (middle), and output texture of the
pixel.

3.7 Isosurfaces

We have developed a polygonization algorithm which computes an
isosurface in material space using a Marching Cubes type algorithm
[Lorensen and Cline 1987]. The algorithm divides the cubic parent
element of each (potentially curvilinear) finite element into a regu-
lar grid of (l + 1)(m+ 1)(n+ 1) sample values which form l ·m ·n
cubes in material space. The isosurface intersection with each cube
is determined by considering the sign of the scalar field at the cube’s
vertices. Each edge with vertex values of different sign is assumed
to intersect the isosurface once. The intersection point in mate-
rial coordinates is approximated by linearly interpolating the scalar
field values between the vertices.

In order to speed-up the isosurface computation all topologically
different intersections of the isosurface with the cube are precom-
puted and stored in a look-up table. Since a cube has 8 vertices
there are 28 = 256 different configurations. Some configurations
contain ambiguous faces for which the edge intersection points can
be connected in two different ways. We create for each such config-
uration subcases by determining the topology of the bilinear inter-
polant over a face from the intersection of its asymptotes (see [Niel-
son and Hamann 1991; Mackerras 1992]). The result is a look-up
table with 656 entries.

The surface normals of the isosurface are given by the field’s gra-
dient function if it is defined and if its use is appropriate. Otherwise
the normals are determined by first precomputing the material coor-
dinate gradients for all grid points using finite differences. For each
isosurface intersection the ξ -derivative of the scalar field s at that
point is then approximated by linearly interpolating the gradients at
the grid vertices. Finally the surface normal is given by the gradient
in world coordinates which is

∇s =




∂ s
∂x1
∂ s
∂x2
∂ s
∂x3


 =




∑3
i=1

∂ s
∂ξi

∂ξi
∂x1

∑3
i=1

∂ s
∂ξi

∂ξi
∂x2

∑3
i=1

∂ s
∂ξi

∂ξi
∂x3


 = ∇ξ s J−1

where J−1 = ∂ξi
∂x j

is the inverse of the Jacobian of the isoparametric

mapping from material to world coordinates and ∇ξ s is the gradient
of s with respect to the material coordinates.

More details are found in [Wünsche and Lin 2003].

3.7.1 Advantages

Performing the isosurface computation in material space has the
advantage that scalar field values can be computed directly without
performing a multi-dimensional Newton method or resampling the
data. The resulting isosurface lies smoothly inside the finite ele-

ment, i.e., only very small areas of the isosurface stick out of the
model boundaries and there are no erroneous results due to sam-
ple values which lie outside the model boundary and for which the
scalar field is undefined. Furthermore the method is more efficient
since only the actual model domain is subdivided rather than its
bounding box in world coordinates. Finally the computation in ma-
terial space is often more precise. For example, if tricubic elements
are used then the linear interpolation used to compute the intersec-
tion points of the cube’s edges with the isosurface will yield the
exact result. In contrast the computation in world coordinates is
exact only if the elements are cuboidal and if the sample grid is
aligned with each element.

ξ1

ξ3

ξ2
Positive vertex
Negative vertex

Polygon

x

y

z

Same vertex in
world coordinates

Same vertex in
world coordinates

Figure 13: Isosurface within a degenerate finite element approxi-
mated with one Marching Cubes cell.

It is interesting to note that our polygonization algorithm is sta-
ble even if degenerate finite elements are used. Figure 13 gives
an example of an element which has two pairs of vertices with the
same world coordinates. If we approximate the finite element with
a single Marching Cubes cell then we obtain two triangles (con-
figuration 9) where one of the triangles is a line since the two edge
intersections on the right face have the same world coordinates. Our
algorithm removes such degenerate triangles since they do not con-
tribute to the rendered surface and since the polygonized isosurface
might be used as input to a postprocessing step such as a mesh re-
duction algorithm.

3.7.2 Visualization of Normal Strains

Using the above described algorithm we can compute isosurfaces
to visualize the distribution of the strains in the material directions.
Since the strain tensor is defined with respect to the material co-
ordinates the strains in the circumferential, longitudinal and radial
directions (the so-called normal strains) are given by the diagonal
components E11, E22 and E33, respectively, of the strain tensor E.



Figure 14: The normal strain in the circumferential (top), longi-
tudinal (middle) and radial (bottom) directions on the endocardial
surface of the healthy (left) and sick (right) heart. The images show
also the 0-isosurface which separates regions of compressive and
expanding strain. The septal wall is indicated by a yellow sphere.

Figure 14 visualizes the normal strains on the endocardial sur-
face using color mapping and shows additionally the 0-isosurface
of each normal strain, which separates contracting and expanding
regions.

The images on the left of the figure show clearly that the healthy
left ventricle contracts in the circumferential and longitudinal direc-
tions and expands in the radial direction. The only exceptions are
a few small regions close to the epicardial surface of the ventricle
and, for the radial strain, three small cylindrical regions at the apex
and the septal and lateral wall. All three normal strain components
are distributed relatively evenly over the endocardial surface.

For the diseased heart the lateral wall and part of the anterior
and inferior wall contract in the circumferential and longitudinal
directions. Wall thickening is observed in the basal-lateral wall, the
basal-septal wall and in parts of the anterior and inferior wall. The
rest of the myocardium shows an abnormal deformation. As a result
of the strain distribution the ventricle does not contract evenly but
rather performs a shape change.

We are also interested in the shear components of the strain ten-
sor. It is known that during contraction the heart changes predom-
inantly in diameter. LeGrice et al. [LeGrice et al. 1995] reports
8% lateral expansion but 40% wall thickening. This indicates re-
organization of the myocytes during systole. Because of the sheet
structure of the myocardium it has been proposed that the sheets can
slide over another restricted mainly by the length of the intercon-
necting collagen fibers [LeGrice et al. 1995]. The shear properties
of the myocardium resulting from this sliding motion are charac-
terized in [Dokos et al. 2002]. The shear is most restricted in the
direction of the sheet normals and the maximum shear is possible in
the fiber direction. Wall shear is thought to be an important mech-
anism of wall thickening during systole and therefore may play a
substantial role in the ejection of blood from the ventricle.

Figure 15: The circumferential-longitudinal shear strain component
in the healthy (left) and sick (right) heart visualized using a color
map and the 0-isosurface. The septal wall is indicated by a yellow
sphere.

Figure 15 shows the shear in the circumferential-longitudinal
plane. For the healthy heart the shear strain is positive for most of
the myocardium with the exception of some subepicardial regions
close to the merging point with the right ventricular wall. No con-
sistent behavior can be found for the diseased heart. The shear in
the lateral wall resembles most closely the normal range of values
whereas the anterior-basal region exhibits extremely high negative
strains, which might indicate impending tissue damage.



4 Conclusion

Visualizing the strain field improves the understanding of the com-
plex deformation of the heart muscle. Using techniques new to the
biomedical field offers additional insight.

Color maps give a good overview of the strain distribution. In
order to compare two models the same color map and view param-
eters should be used. Spectrum markers can be used to indicate
isocontours in the visualized scalar field and cyclical color maps
are useful for revealing structures such as symmetries and disconti-
nuities.

Using tensor ellipsoids, streamlines and hyperstreamlines makes
it possible to visualize complex deformation behavior in a single
image. Line integral convolution uncovers the presence of degener-
ate points at which the principal strains suddenly change direction.
Further investigations are necessary to find the relationship between
degenerate points, fiber structure, and the ventricular anatomy.

Isosurfaces are ideal to separate contracting and expanding re-
gions of the heart muscle. We introduced a novel algorithm for
computing isosurfaces for scalar fields defined over curvilinear fi-
nite elements. The algorithm is fast, topologically correct, gives a
nearly precise fit of the isosurface with respect to the model geom-
etry and is stable for degenerate finite elements. Ambiguous cube
configurations are resolved using an efficient table look-up scheme.

Using the presented techniques we were able to visualize the my-
ocardial strain in a healthy and a diseased left ventricle. The vi-
sualization of the healthy heart confirmed observations previously
reported in the literature. Visualizing a ventricle with dilated car-
diomyopathy showed that the deformation of the lateral wall re-
sembles most closely the expected motion whereas the septal wall
behaved almost contrary to the expected deformation. Very large
negative shear strains were recorded in the anterior-basal wall of
the ventricle. The combined effect of these deformations seems to
be a pumping action by shape deformation (from circular to ellip-
soidal cross section) rather then by contraction.

5 Future Research

We are interested in visualizing other data sets of diseased hearts, in
particularly models of ischemic myocardium. It is known that small
changes in the deformation behavior of the myocardium occur be-
fore first symptoms of a cardiac infarct develop and we hope that
visualizing myocardial strain supports the detection of regions of
low blood perfusion. Non-traditional visualization methods such as
hyperstreamlines, LIC and tensor topology [Delmarcelle and Hes-
selink 1994; Lavin et al. 1997] seem to be particularly promising
for this purpose.

Of special interest is the relationship between myocardial strain
and fiber structure. Recent research suggests that in vivo measure-
ment of the fiber structure is possible using diffusion tensor imaging
[Sachse et al. 2001; Arts et al. 2001]. Further information could be
provided by fusing our data with functional data obtained by PET
and SPECT [Ruddy et al. 1999].
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