
CodeAnnotator: Digital Ink Annotation within Eclipse
Xiaofan Chen

Auckland University
Auckland, New Zealand

xche044@ec.auckland.ac.nz

Beryl Plimmer
Auckland University

Auckland, New Zealand
beryl@cs.auckland.ac.nz

ABSTRACT
Programming environments do not support ink annotation. Yet,
annotation is the most effective way to actively read and review
a document. This paper describes a tool, CodeAnnotator, which
integrates annotation support inside an Integrated Development
Environment (IDE). This tool is designed and developed to
support direct annotation of program code with digital ink in the
IDE. Programmers will benefit from a more intuitive interaction
space to record notes and comments just as they would on paper
documents.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Interfaces,
Graphical user interfaces.

General Terms
Design, Performance, Experimentation

Author Keywords
Digital ink annotation, annotation, sketch, eclipse

1. INTRODUCTION
Annotating documents when reading assists readers by
enhancing reading-comprehension activities [5, 6]. Moreover,
reading documents that have been annotated by previous
readers improves subsequent readers’ understanding and recall
of the emphasized items [15, 18]. People are accustomed to
making annotations with pens on paper documents. More
recently, researchers have been exploring adding digital ink
functionality to provide annotation over digital documents [8, 9,
11, 12]. However, Integrated Development Environments (IDE)
do not support digital ink annotation. People cannot make
annotations directly inside the IDEs without the addition of
annotation support.

This project aims to provide people with an electronic
environment to annotate code documents within an IDE. We
designed and developed a tool, CodeAnnotator, to support users
directly annotating over code within Eclipse. As this tool
integrates annotation support inside the IDE, it offers additional
advantages inherent from typical code review processes, as
explained by Priest [12].

With CodeAnnotator after loading a code file in an IDE, users

can write annotations using a digital pen while also having all
the functions offered by the IDE, such as debugging, compiling,
and executing. Therefore, users have both IDE and annotation
support.

This paper begins with a summary of related work on digital ink
annotation. Then it presents the design requirements and
implementation of CodeAnnotator, followed by conclusions and
future work.

2. RELATED WORK
Most early annotation tools, such as Wang Freestyle [3] and
XLibris [4, 14], only supported annotating over static
documents. These tools provide users with simple free-form ink
annotation and an interface and features similar to that of paper.
They are self-reliant, independent from environments and may
be used by people when editing and reading digital documents.

With the experiences researchers gained from development of
self-reliant annotation tools, new tools that integrate annotation
support inside other applications have emerged. For instance,
people can annotate over documents directly in Microsoft Word
[7] and MADCOW [2], WPM [17] and Web annotation tool
[13] assist users in making annotations in web browsers.

However, code documents have a unique feature that other
types of documents do not have: code is non-linear; it is
arranged in logical classes and procedures that are not intended
to be read sequentially like a book [12]. Some digital ink
annotation tools have been designed and developed to meet the
unique features of code. Penmarked [11] is a tool for annotating
and marking student assignments on Tablet PCs. Teachers can
read the assignments and add digital ink annotations directly on
the document. The limitation of this system is it only deals with
static documents and opens files as a text file, so the code (Java,
C# etc.) can not be compiled or run under this system. Gild [10]
is a set of plug-ins for Eclipse to mark assignments written in
Java, however, it doesn’t support digital ink annotation. RCA
[12] is a code annotation tool added to Visual Studio .Net 2005
(VS). Users record digital ink annotation on a code file opened
in VS, and also use all the functions provided by VS. However,
it doesn’t provide navigation of annotations to support users
finding and moving between annotations.

A program document is normally very long and split among
many files. Navigation support of annotations can provide users
with an outline of existing annotations and the information of
how many and where annotations exist. In addition, it assists
users to easily locate a specific annotation. Among the current
available annotation tools, there are no tools that provide
navigation support.

OzCHI 2007, 28-30 November 2007, Adelaide, Australia. Copyright the
author(s) and CHISIG. Additional copies are available at the ACM
Digital Library (http://portal.acm.org/dl.cfm) or can be ordered from
CHISIG(secretary@chisig.org)

OzCHI 2007 Proceedings, ISBN 978-1-59593-872-5

mailto:xche044@ec.auckland.ac.nz
mailto:beryl@cs.auckland.ac.nz

3. DESIGN
Digital ink annotation requires support for three major
functions: the annotations must be free-form and modifiable,
the annotations can be reflowed when the underlying text is
changed, and navigation support is provided to help users to
overview, select and find annotations.

3.1 Requirements
The IDE must be extensible to allow developers to extend its
functionality and add in other functions. In order to allow the
IDE to perform normally while supporting digital ink
annotation, CodeAnnotator must integrate into the IDE
seamlessly.

When a user first selects a code file to annotate, a new
annotation file will be created and stored as a part of the
development project. Once the user finishes the annotation, the
annotation file needs to be saved to allow later review. The
annotation file will be loaded when the user wants to review or
annotate the selected code file.

3.2 Free-form and modifiable annotation
Free-form annotation consists of words, symbols and text
selection marks, and allows annotations to be made anywhere
without limitation on shape or content [14]. This is achieved by
overlaying the code window with a transparent canvas that
holds ink annotations and associating annotations to the
underlying code by making the code window and the
transparent canvas scroll together. This approach allows users
to annotate anywhere inside the code window; there is no
restriction of a pagination boundary in the code window as
there is in document formats such as PDF that set artificial
restraints on the users’ positioning of the annotations

When people annotate over paper documents with pens, it is
hard to modify existing annotations. Modifying real ink
annotations usually involves concealing or crossing out the
annotations then rewriting them, this looks messy. A digital ink
annotation tool provides users with a means to efficiently and
cleanly erase, select, move and recolor a selected annotation.

3.3 Reflowing annotations
One of the most important features of digital ink annotation
tools is to be able to deal with dynamic digital documents. As
annotation is most often a function of some type of review it
must be expected that the text inside the documents will be
changed. This requires the existing annotations reflow to remain
consistent with the underlying code when the code file is
modified. In order to reflow annotations, ink strokes have to be
grouped. Annotations belonging to the same underlying context
must be grouped together by taking into consideration location
and temporal properties of the ink strokes that make up the
annotation [1, 16]. Then when underlying code moves up/down,
any attached annotation group has to move too. And when
underlying code is deleted, its attached annotation must either
be deleted or archived.

A code file is arranged line by line. Each code line cannot be
rearranged like a sentence and typically lines are not wrapped
when resizing the code window. Therefore, it is unnecessary to
consider the issue of reflowing annotations horizontally. We
only need to focus on moving annotations up or down inside the
code window.

3.4 Navigation support
A project contains many code files. A code file is structured by
its classes and procedures. IDEs often offer a navigation system
to assist programmers to know which code files exist in the
project and how classes are related in a code file, and to locate a
specific class.

For digital ink annotation tools, it is useful to provide a similar
navigation system to users. A code file often extends over many
lines and cannot be fully displayed in one screen. We have to
scroll the screen up/down to review existing annotations, which
is very inconvenient. Through the navigation system, users can
easily locate a specific annotation inside the code window.

4. IMPLEMENTATION
CodeAnnotator is developed inside Eclipse as a set of plug-ins.
Because Eclipse supports Java language it is a popular open
source IDE that is used extensively in teaching departments and
industry.

CodeAnnotator can be used on Tablet PCs or desktop
computers with a tablet USB input device. It allows users to
directly annotate onto the output screen. This tool is
implemented in Java using both the Java API and Eclipse
framework.

Figure 1. CodeAnnotator in Eclipse

Figure 1 shows an annotation window in Eclipse. When a user
loads a code file and select annotation model from the Eclipse
toolbar, a new annotation window is created based on the
current code window and an outline window is created. The
flyout-Palette at the right side of the annotation window
contains the annotation tools.

The major features of CodeAnnotator are: attaching annotations
to a specific code line, grouping annotations and editing them,
reflowing annotations, and navigating annotations.

4.1 Attaching Annotations
Ink strokes are used as linkers to link a group of annotations to
a specific code line [12]. Linkers are a line or a circle. Each is
treated differently so first we have to recognize the linkers. A
feature of a straight line is that its start and end points touch the

left and right border of the bounding box (See Figure 2). A
circle can be discriminated from a line by measuring whether
the distance between the first and last point (ab) less than 25%
of the hypotenuses of the bounding box (a’b’) (See Figure 3).

Figure 2. Line linker

Figure 3. Circle linker

If the linker is a line, then its corresponding annotation group is
linked to the code line closest to the start point of the linker.
Otherwise, for a circle the corresponding annotation group is
attached to the line closest to the middle point of the bounding
box.

4.2 Group and edit annotations
We group annotations based on the spatial and temporal
properties of the annotations [1, 16]. After creating a linker, if
the subsequent annotation is created in less than two seconds,
then it belongs to this linker. If the following annotation is
created in less than two seconds, then it also belongs to this
linker. Otherwise, we use the spatial property of the annotation
to decide which group it belongs to.

Spatially adjacent annotations are considered to be in the same
group. We calculate the position of the new annotation; say at
the coordinate (x1, y1), its height is h1, its width is w1.
According to this calculated position, we find the closest
annotation group and then this annotation belongs to this group.
For example, the first group is located at the coordinate x2, y2,
and size h2, w2 and the second group is located at the
coordinate x3, y3, and size h3, w3. (See Figure 4)

• If the range from y1 to y1+h1 partially overlaps with the
range from y2 to y2+h2, then the new annotation belongs
to the first group.

• If the range from y1 to y1+h1 partially overlaps with the
range from y3 to y3+h3, then the new annotation belongs
to the second group.

• If the range from y1 to y1+h1 overlaps with both the range
from y2 to y2+h2 and the range from y3 to y3+h3, then we
have to decide which is closest:

• If x1 is bigger than x2 and x3, then if x1 is closer to
x2+w2 than to x3+w3, then the new annotation
belongs to the first group, otherwise it belongs to the
second group.

• If x1 is less than x2 and x3, then if x1 is closer to x2
than to x3, the new annotation belongs to the first
group, otherwise it belongs to the second.

• If x1 is bigger than x2 and is less than x3, then x1
belongs to the first group because we are more likely
to append comments to the existing annotation.

• If x1 is bigger than x3 and is less than x2, then x1
belongs to the second group

• Otherwise, we consider the new annotation to be a new
group.

Editing annotations is a very important function in annotation
tools. We support moving a specific annotation group around
by selecting and then dragging it, the linker position is
recalculated after a move. Also an annotation can be deleted or
erased by selecting it with the eraser tool. Annotations can be
written in different colors by selecting a color before writing.
Moreover, we can recolor an existing annotation by selecting it
and then selecting a different color from the color tool.

4.3 Reflow annotations
Reflowing existing annotations is necessary to maintain
consistency with the underlying code. We only need to consider
the vertical reflow as code is line-based. There are three
situations we need to handle, as explained by Priest [12]. First,
when several code lines are added ahead of a code line with
annotations, this code line and its associated annotation group
moves down together. Second, when several code lines are
deleted ahead of a code line with annotations, this code line and
its corresponding annotation group moves up together. Third,
when a code line with annotations is deleted, its associated
annotation group is also deleted.

4.4 Navigation support

Figure 5. Navigation support

The navigation system includes a Navigator window and an
Outline window. The Navigator window tells users which code
files were annotated. The Outline window guides users to locate

Figure 4. Group annotations

(x3,y3,h3,w3)

(x1,y1,h1,w1)
(x2,y2,h2,w2)

the position of a specific annotation inside the annotation
window, and provides a graphical outline of existing
annotations. Users can directly open an annotation file in the
Navigator window. After this file is opened, an Outline window
is automatically opened and shows a graphical outline of
existing annotations in this file. When users make an annotation
in the annotation window, a copy of this annotation and its
corresponding information such as location will be put inside
the Outline window (See Figure 5). When users select a specific
annotation inside the Outline window, the annotation window
will scroll to the page containing this annotation.

5. CONCLUSIONS AND FUTURE WORK
This paper describes a code digital ink annotation tool,
CodeAnnotator. The objective of this tool is to provide users
with an electronic environment to annotate in Eclipse. This tool
lets users enjoy both digital ink annotation and Eclipse support.
In other words, after loading a code file in Eclipse, users can
write annotations with a digital pen and can also access all the
functions provided by Eclipse, such as debugging, compiling,
and executing.

Including handwriting recognition is a challenge because the
writing and iconic annotation must first be separated. We are
yet to extend CodeAnnotator to recognize handwriting. When
this is completed the next steps are to conduct usability testing
and evaluation studies to assess the efficacy annotation within
an IDE.

Another interesting extension would be functionality to
consolidate digital ink annotations made by different users into
one file to support collaborative code review. The separate
digital ink annotations can be merged automatically with some
mechanism to differentiate each person’s annotations,
particularly when they are in the same place. Furthermore, we
could extend CodeAnnotator to support assignment marking.
This would allow markers to directly mark and comment
programming assignments in Eclipse.

6. REFERENCES
[1] Bargeron, D. and Moscovish, T. Reflowing digital ink

annotations. CIII 2003, April 5-10, ACM Press
(2003),385-392

[2] Bottoni, P., Levialdi, S., Labella, A., Panizzi, E.,
Trinchese, R. and Gigli, L. MADCOW: a visual interface
for annotating web pages. Proc. of the working conference
on Advanced visual interfaces AVI ’06, ACM Press (2006),
314-317

[3] Francik, E. Rapid, Integrated design of a multimedia
communication system. Human Computer Interface
Design (1995), 36-69

[4] Golovchinsky, G. and Denoue, L. Moving Markup:
Repositioning freeform annotations. Proc. UIST 2002,
ACM Press (2002), 21-30

[5] Marshall, C. C. Annotation: from paper books to the
digital library. Proc DL 1997, ACM Press (1997), 131-
140

[6] Marshall, C. C. Toward an ecology of hypertext
annotation. Proc. HyperText 1998, ACM Press (1998), 40-
48

[7] Microsoft Word.

http://www.microsoft.com/office/word/using.htm

[8] Mock, K. Teaching with Tablet PCs. Proc. Journal of
Computing Sciences in Colledges 20, 2 (2004) 17-27

[9] Moran , T. P., C, P. and Van Melle, W. Pen-based
interaction techniques for organizing material on an
electronic whiteboard. In Symposium on User Interface
Software and Technology (1997), 45-54

[10] Myers, D., Hargreaves, E., Ryall, J., Thompson, S.,
Burgess, M., German, D. and Storey, M. Developing
marking support within Eclipse. Proc. Of OOPSLA 2004,
ACM Press (2004), 62-66

[11] Plimmer, B. and Mason, P. A Pen-based paperless
environment for annotating and marking student
assignments. Proc. 7th Australasian User Interface
Conference, CRPIT press (2006), 37-44

[12] Priest, R. and Plimmer, B. RCA: Experiences with an IDE
annotation tool. Proc. 6th ACM SIGCHI New Zealand
chapters international conference 2006, ACM Press
(2006), 53-60

[13] Ramachandran, S. and Kashi, R. An architecture for ink
annotations on web documents. Proc. 17th International
Conference on Document Analysis and Recognition, IEEE
Computer Society (2003), 256-260

[14] Schilit, B. N., Golovchinsky, G. and Price, M.N. Beyond
Paper: Supporting active reading with free form digital ink
annotations. Proc. CHI 98, lOS Angeles, CA, ACM Press
(1998), 249-256

[15] Schumacher, G. M. and Nash, G. J. Conceptualizing and
Measuring knowledge change due to writing. Research in
the teaching of English, vol 25, pp. 67-96, 1991

[16] Shilman, M. and Viola, P. Spatial recognition and
grouping of text and graphics. EUROGRAPHICS
Workshop on Sketch-Based Interfaces and Modeling 2004.
Eurographics digital library

[17] Takahiro, K., Tashiro, N., Ozono, T., Ito, T., and Shintani,
T. Web Page Marker: a web browsing support system
based on marking and anchoring. WWW 2005, May 10-14.
Chiba. Japan. ACM, 1012-1013

[18] Wolf, J. L. Effects of annotations on student readers and
writers. Digital Libraries, San Antonio, TX, ACM Press
(2000) 9-26

	1. INTRODUCTION
	2. RELATED WORK
	3. DESIGN
	3.1 Requirements
	3.2 Free-form and modifiable annotation
	3.3 Reflowing annotations
	3.4 Navigation support

	4. IMPLEMENTATION
	4.1 Attaching Annotations
	4.2 Group and edit annotations
	4.3 Reflow annotations
	4.4 Navigation support

	5. CONCLUSIONS AND FUTURE WORK
	6. REFERENCES

